Ziqing Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1785262/publications.pdf

Version: 2024-02-01

759233 996975 1,774 14 12 15 h-index citations g-index papers 16 16 16 3405 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations. Biochemical and Biophysical Research Communications, 2014, 453, 254-267.	2.1	591
2	1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nature Biotechnology, 2019, 37, 179-185.	17.5	402
3	Prophage Hunter: an integrative hunting tool for active prophages. Nucleic Acids Research, 2019, 47, W74-W80.	14.5	169
4	Multiple approaches for massively parallel sequencing of SARS-CoV-2 genomes directly from clinical samples. Genome Medicine, 2020, 12, 57.	8.2	104
5	Intra-host variation and evolutionary dynamics of SARS-CoV-2 populations in COVID-19 patients. Genome Medicine, 2021, 13, 30.	8.2	88
6	The joint effects of sulfonamides and their potentiator on Photobacterium phosphoreum: Differences between the acute and chronic mixture toxicity mechanisms. Chemosphere, 2012, 86, 30-35.	8.2	86
7	Model of Hormesis and Its Toxicity Mechanism Based on Quorum Sensing: A Case Study on the Toxicity of Sulfonamides to <i>Photobacterium phosphoreum</i> Environmental Science & Environmental Science	10.0	79
8	Pigmented edible bean coats as natural sources of polyphenols with antioxidant and antibacterial effects. LWT - Food Science and Technology, 2016, 73, 168-177.	5 . 2	76
9	Anaerobic expression of the gadE-mdtEF multidrug efflux operon is primarily regulated by the two-component system ArcBA through antagonizing the H-NS mediated repression. Frontiers in Microbiology, 2013, 4, 194.	3.5	56
10	Novel approach to predicting hormetic effects of antibiotic mixtures on Vibrio fischeri. Chemosphere, 2013, 90, 2070-2076.	8.2	42
11	Population Bottlenecks and Intra-host Evolution During Human-to-Human Transmission of SARS-CoV-2. Frontiers in Medicine, 2021, 8, 585358.	2.6	28
12	A docking-based receptor library of antibiotics and its novel application in predicting chronic mixture toxicity for environmental risk assessment. Environmental Monitoring and Assessment, 2013, 185, 4513-4527.	2.7	22
13	Global Landscape of Clostridioides Difficile Phylogeography, Antibiotic Susceptibility, and Toxin Polymorphisms by Post-Hoc Whole-Genome Sequencing from the MODIFY I/II Studies. Infectious Diseases and Therapy, 2021, 10, 853-870.	4.0	17
14	Study of the Expression of Bacterial Multidrug Efflux Pumps in Anaerobic Conditions. Methods in Molecular Biology, 2018, 1700, 253-268.	0.9	2