Yasuyuki Suda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1785156/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of CLB6 expression by the cytoplasmic deadenylase Ccr4 through its coding and 3' UTR regions. PLoS ONE, 2022, 17, e0268283.	2.5	2
2	The eIF4E-binding protein Eap1 has similar but independent roles in cell growth and gene expression with the cytoplasmic deadenylase Ccr4. Bioscience, Biotechnology and Biochemistry, 2021, 85, 1452-1459.	1.3	1
3	Pbp1 mediates the aberrant expression of genes involved in growth defect of ccr4 â^† and pop2 â^† mutants in yeast Saccharomyces cerevisiae. Genes To Cells, 2021, 26, 381-398.	1.2	5
4	Pbp1, the yeast ortholog of human Ataxin-2, functions in the cell growth on non-fermentable carbon sources. PLoS ONE, 2021, 16, e0251456.	2.5	4
5	Suppression of Vps13 adaptor protein mutants reveals a central role for PI4P in regulating prospore membrane extension. PLoS Genetics, 2021, 17, e1009727.	3.5	12
6	Pan2-Pan3 complex, together with Ccr4-Not complex, has a role in the cell growth on non-fermentable carbon sources. Biochemical and Biophysical Research Communications, 2021, 570, 125-130.	2.1	1
7	Pop2 phosphorylation at S39 contributes to the glucose repression of stress response genes, HSP12 and HSP26. PLoS ONE, 2019, 14, e0215064.	2.5	5
8	Visualization of secretory cargo transport within the Golgi apparatus. Journal of Cell Biology, 2019, 218, 1602-1618.	5.2	63
9	Yeast Dop1 is required for glycosyltransferase retrieval from the trans-Golgi network. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1147-1157.	2.4	4
10	Spatiotemporal dissection of the <i>trans</i> -Golgi network. Journal of Cell Science, 2019, 132, .	2.0	42
11	Activation of Rab GTPase Sec4 by its GEF Sec2 is required for prospore membrane formation during sporulation in yeast Saccharomyces cerevisiae. FEMS Yeast Research, 2018, 18, .	2.3	6
12	Regulation of LRG1 expression by RNAâ€binding protein Puf5 in the budding yeast cell wall integrity pathway. Genes To Cells, 2018, 23, 988-997.	1.2	8
13	Dynamic localization of a yeast development–specific PP1 complex during prospore membrane formation is dependent on multiple localization signals and complex formation. Molecular Biology of the Cell, 2017, 28, 3881-3895.	2.1	9
14	Regulation of ER-Golgi Transport Dynamics by GTPases in Budding Yeast. Frontiers in Cell and Developmental Biology, 2017, 5, 122.	3.7	29
15	Cytoplasmic deadenylase Ccr4 is required for translational repression of LRG1 mRNA in the stationary phase. PLoS ONE, 2017, 12, e0172476.	2.5	15
16	Analysis of the Physiological Activities of Scd6 through Its Interaction with Hmt1. PLoS ONE, 2016, 11, e0164773.	2.5	12
17	Different Regulations of <i>ROM2</i> and <i>LRG1</i> Expression by Ccr4, Pop2, and Dhh1 in the Saccharomyces cerevisiae Cell Wall Integrity Pathway. MSphere, 2016, 1, .	2.9	12
18	COPI is essential for Golgi cisternal maturation and dynamics. Journal of Cell Science, 2016, 129, 3251-61.	2.0	49

Yasuyuki Suda

#	Article	IF	CITATIONS
19	Sar1 localizes at the rims of COPII-coated membranes in vivo. Journal of Cell Science, 2016, 129, 3231-7.	2.0	30
20	The Dysferlin Domain-Only Protein, Spo73, Is Required for Prospore Membrane Extension in Saccharomyces cerevisiae. MSphere, 2016, 1, .	2.9	10
21	Phosphatidylinositol 3-Kinase and 4-Kinase Have Distinct Roles in Intracellular Trafficking of Cellulose Synthase Complexes in Arabidopsis thaliana. Plant and Cell Physiology, 2015, 56, 287-298.	3.1	60
22	Dynamic Behavior of the trans-Golgi Network in Root Tissues of Arabidopsis Revealed by Super-Resolution Live Imaging. Plant and Cell Physiology, 2014, 55, 694-703.	3.1	94
23	Live Cell Visualization of Golgi Membrane Dynamics by Super-resolution Confocal Live Imaging Microscopy. Methods in Cell Biology, 2013, 118, 235-242.	1.1	47
24	Rab GAP cascade regulates dynamics of Ypt6 in the Golgi traffic. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18976-18981.	7.1	62
25	The Yeast <scp>G</scp> olgi Apparatus. Traffic, 2012, 13, 505-510.	2.7	46
26	Vesicle Docking to the Spindle Pole Body Is Necessary to Recruit the Exocyst During Membrane Formation in <i>Saccharomyces cerevisiae</i> . Molecular Biology of the Cell, 2010, 21, 3693-3707.	2.1	19
27	A Screen for Spore Wall Permeability Mutants Identifies a Secreted Protease Required for Proper Spore Wall Assembly. PLoS ONE, 2009, 4, e7184.	2.5	36
28	Protein Phosphatase Type 1-Interacting Protein Ysw1 Is Involved in Proper Septin Organization and Prospore Membrane Formation during Sporulation. Eukaryotic Cell, 2009, 8, 1027-1037.	3.4	11
29	Erv14 family cargo receptors are necessary for ER exit during sporulation in Saccharomyces cerevisiae. Journal of Cell Science, 2007, 120, 908-916.	2.0	50
30	Alternative Modes of Organellar Segregation during Sporulation in <i>Saccharomyces cerevisiae</i> . Eukaryotic Cell, 2007, 6, 2009-2017.	3.4	52
31	Saccharomyces cerevisiae QNS1 codes for NAD+ synthetase that is functionally conserved in mammals. Yeast, 2003, 20, 995-1005.	1.7	30