
Darius J R Lane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1785093/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10775-10782.	7.1	413
2	Iron and Alzheimer's Disease: An Update on Emerging Mechanisms. Journal of Alzheimer's Disease, 2018, 64, S379-S395.	2.6	205
3	The active role of vitamin C in mammalian iron metabolism: Much more than just enhanced iron absorption!. Free Radical Biology and Medicine, 2014, 75, 69-83.	2.9	178
4	Mammalian Iron Homeostasis in Health and Disease: Uptake, Storage, Transport, and Molecular Mechanisms of Action. Antioxidants and Redox Signaling, 2013, 18, 2473-2507.	5.4	172
5	Roads to melanoma: Key pathways and emerging players in melanoma progression and oncogenic signaling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 770-784.	4.1	148
6	The old and new biochemistry of polyamines. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2053-2068.	2.4	145
7	Voltageâ€dependent anionâ€selective channel (VDAC) in the plasma membrane. FEBS Letters, 2010, 584, 1793-1799.	2.8	144
8	VDAC1 Is a Transplasma Membrane NADH-Ferricyanide Reductase. Journal of Biological Chemistry, 2004, 279, 4811-4819.	3.4	141
9	The renaissance of polypharmacology in the development of anti-cancer therapeutics: Inhibition of the "Triad of Death―in cancer by Di-2-pyridylketone thiosemicarbazones. Pharmacological Research, 2015, 100, 255-260.	7.1	127
10	Redox cycling metals: Pedaling their roles in metabolism and their use in the development of novel therapeutics. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 727-748.	4.1	111
11	Copper and conquer: copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics. Metallomics, 2016, 8, 874-886.	2.4	105
12	Duodenal Cytochrome b (DCYTB) in Iron Metabolism: An Update on Function and Regulation. Nutrients, 2015, 7, 2274-2296.	4.1	103
13	Two routes of iron accumulation in astrocytes: ascorbate-dependent ferrous iron uptake via the divalent metal transporter (DMT1) plus an independent route for ferric iron. Biochemical Journal, 2010, 432, 123-132.	3.7	88
14	Molecular functions of the iron-regulated metastasis suppressor, NDRG1, and its potential as a molecular target for cancer therapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1845, 1-19.	7.4	88
15	Mitochondrial Mayhem: The Mitochondrion as a Modulator of Iron Metabolism and Its Role in Disease. Antioxidants and Redox Signaling, 2011, 15, 3003-3019.	5.4	84
16	The Metastasis Suppressor, N-myc Downstream-regulated Gene 1 (NDRG1), Inhibits Stress-induced Autophagy in Cancer Cells. Journal of Biological Chemistry, 2014, 289, 9692-9709.	3.4	83
17	Systematic Review: Quantitative Susceptibility Mapping (QSM) of Brain Iron Profile in Neurodegenerative Diseases. Frontiers in Neuroscience, 2021, 15, 618435.	2.8	83
18	Ascorbate and plasma membrane electron transport—Enzymes vs efflux. Free Radical Biology and Medicine, 2009, 47, 485-495.	2.9	68

DARIUS J R LANE

#	Article	IF	CITATIONS
19	The Metastasis Suppressor, N-MYC Downstream-regulated Gene-1 (NDRG1), Down-regulates the ErbB Family of Receptors to Inhibit Downstream Oncogenic Signaling Pathways. Journal of Biological Chemistry, 2016, 291, 1029-1052.	3.4	65
20	The proto-oncogene c-Src and its downstream signaling pathways are inhibited by the metastasis suppressor, NDRG1. Oncotarget, 2015, 6, 8851-8874.	1.8	64
21	Voltage-dependent anion-selective channel 1 (VDAC1)—a mitochondrial protein, rediscovered as a novel enzyme in the plasma membrane. International Journal of Biochemistry and Cell Biology, 2005, 37, 277-282.	2.8	62
22	Nitrogen Monoxide (NO) Storage and Transport by Dinitrosyl-Dithiol-Iron Complexes: Long-lived NO That Is Trafficked by Interacting Proteins. Journal of Biological Chemistry, 2012, 287, 6960-6968.	3.4	60
23	N-myc Downstream Regulated 1 (NDRG1) Is Regulated by Eukaryotic Initiation Factor 3a (eIF3a) during Cellular Stress Caused by Iron Depletion. PLoS ONE, 2013, 8, e57273.	2.5	59
24	Ferroptosis and NRF2: an emerging battlefield in the neurodegeneration of Alzheimer's disease. Essays in Biochemistry, 2021, 65, 925-940.	4.7	57
25	Transferrin iron uptake is stimulated by ascorbate via an intracellular reductive mechanism. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1527-1541.	4.1	53
26	Turning the gun on cancer: Utilizing lysosomal P-glycoprotein as a new strategy to overcome multi-drug resistance. Free Radical Biology and Medicine, 2016, 96, 432-445.	2.9	52
27	Glucose Modulation Induces Lysosome Formation and Increases Lysosomotropic Drug Sequestration via the P-Glycoprotein Drug Transporter. Journal of Biological Chemistry, 2016, 291, 3796-3820.	3.4	51
28	Expanding horizons in iron chelation and the treatment of cancer: Role of iron in the regulation of ER stress and the epithelial–mesenchymal transition. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1845, 166-181.	7.4	50
29	Non-transferrin Iron Reduction and Uptake Are Regulated by Transmembrane Ascorbate Cycling in K562 Cells. Journal of Biological Chemistry, 2008, 283, 12701-12708.	3.4	47
30	Frataxin and the molecular mechanism of mitochondrial iron-loading in Friedreich's ataxia. Clinical Science, 2016, 130, 853-870.	4.3	45
31	The molecular effect of metastasis suppressors on Src signaling and tumorigenesis: new therapeutic targets. Oncotarget, 2015, 6, 35522-35541.	1.8	43
32	Coupling of the polyamine and iron metabolism pathways in the regulation of proliferation: Mechanistic links to alterations in key polyamine biosynthetic and catabolic enzymes. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2793-2813.	3.8	41
33	Novel Mechanism of Cytotoxicity for the Selective Selenosemicarbazone, 2-Acetylpyridine 4,4-Dimethyl-3-selenosemicarbazone (Ap44mSe): Lysosomal Membrane Permeabilization. Journal of Medicinal Chemistry, 2016, 59, 294-312.	6.4	39
34	Mechanism of the induction of endoplasmic reticulum stress by the anti-cancer agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT): Activation of PERK/eIF2α, IRE1α, ATF6 and calmodulin kinase. Biochemical Pharmacology, 2016, 109, 27-47.	4.4	36
35	Tumor stressors induce two mechanisms of intracellular P-glycoprotein–mediated resistance that are overcome by lysosomal-targeted thiosemicarbazones. Journal of Biological Chemistry, 2018, 293, 3562-3587.	3.4	36
36	Lysosomal membrane stability plays a major role in the cytotoxic activity of the anti-proliferative agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT). Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1665-1681.	4.1	34

DARIUS J R LANE

#	Article	IF	CITATIONS
37	The Glutamate Aspartate Transporter (GLAST) Mediates l-Glutamate-Stimulated Ascorbate-Release Via Swelling-Activated Anion Channels in Cultured Neonatal Rodent Astrocytes. Cell Biochemistry and Biophysics, 2013, 65, 107-119.	1.8	32
38	Selective ferroptosis vulnerability due to familial Alzheimer's disease presenilin mutations. Cell Death and Differentiation, 2022, 29, 2123-2136.	11.2	32
39	Potentiating the cellular targeting and anti-tumor activity of Dp44mT <i>via</i> binding to human serum albumin: two saturable mechanisms of Dp44mT uptake by cells. Oncotarget, 2015, 6, 10374-10398.	1.8	28
40	Anti-plasmodial activity of aroylhydrazone and thiosemicarbazone iron chelators: Effect on erythrocyte membrane integrity, parasite development and the intracellular labile iron pool. Journal of Inorganic Biochemistry, 2013, 129, 43-51.	3.5	26
41	Transplasma membrane electron transport comes in two flavors. BioFactors, 2008, 34, 191-200.	5.4	24
42	A highly sensitive colorimetric microplate ferrocyanide assay applied to ascorbate-stimulated transplasma membrane ferricyanide reduction and mitochondrial succinate oxidation. Analytical Biochemistry, 2008, 373, 287-295.	2.4	19
43	Biochemistry of cardiomyopathy in the mitochondrial disease Friedreich's ataxia. Biochemical Journal, 2013, 453, 321-336.	3.7	19
44	Exploiting Cancer Metal Metabolism using Anti-Cancer Metal- Binding Agents. Current Medicinal Chemistry, 2019, 26, 302-322.	2.4	19
45	Chaperone turns gatekeeper: PCBP2 and DMT1 form an iron-transport pipeline. Biochemical Journal, 2014, 462, e1-e3.	3.7	17
46	Making a case for albumin – a highly promising drug-delivery system. Future Medicinal Chemistry, 2015, 7, 553-556.	2.3	17
47	IRON METABOLISM AND AUTOPHAGY: A POORLY EXPLORED RELATIONSHIP THAT HAS IMPORTANT CONSEQUENCES FOR HEALTH AND DISEASE. Nagoya Journal of Medical Science, 2015, 77, 1-6.	0.3	17
48	Frataxin, a molecule of mystery: trading stability for function in its iron-binding site. Biochemical Journal, 2010, 426, e1-e3.	3.7	16
49	Bonnie and Clyde: Vitamin C and iron are partners in crime in iron deficiency anaemia and its potential role in the elderly. Aging, 2016, 8, 1150-1152.	3.1	16
50	A role for Na+/H+ exchangers and intracellular pH in regulating vitamin C-driven electron transport across the plasma membrane. Biochemical Journal, 2010, 428, 191-200.	3.7	15
51	Structure-Activity Relationships of Novel Salicylaldehyde Isonicotinoyl Hydrazone (SIH) Analogs: Iron Chelation, Anti-Oxidant and Cytotoxic Properties. PLoS ONE, 2014, 9, e112059.	2.5	15
52	Transcriptional regulation of the cyclin-dependent kinase inhibitor, p21 CIP1/WAF1 , by the chelator, Dp44mT. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 761-774.	2.4	10
53	Transplasma membrane electron transport comes in two flavors. BioFactors, 2008, 34, 191-200.	5.4	9
54	Acireductone dioxygenase 1 (ADI1) is regulated by cellular iron by a mechanism involving the iron chaperone, PCBP1, with PCBP2 acting as a potential co-chaperone. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165844.	3.8	8

DARIUS J R LANE

#	Article	IF	CITATIONS
55	Hepcidin, show some self-control! How the hormone of iron metabolism regulates its own expression. Biochemical Journal, 2013, 452, e3-e5.	3.7	6
56	Letter to the Editor: "Analysis of the Interaction of Dp44mT with Human Serum Albumin and Calf Thymus DNA Using Molecular Docking and Spectroscopic Techniquesâ€: International Journal of Molecular Sciences, 2016, 17, 1916.	4.1	3
57	Ascorbate and Tumor Cell Iron Metabolism: The Evolving Story and Its Link to Pathology. Antioxidants and Redox Signaling, 2020, 33, 816-838.	5.4	3
58	William Hunter and radioiodination: revolutions in the labelling of proteins with radionuclides of iodine. Biochemical Journal, 2011, 2011, c1-4.	3.7	3
59	Neuropathological Mechanisms of \hat{l}^2 -N-Methylamino-L-Alanine (BMAA) with a Focus on Iron Overload and Ferroptosis. Neurotoxicity Research, 2022, 40, 614-635.	2.7	2
60	A Rapid and Specific Microplate Assay for the Determination of Intra- and Extracellular Ascorbate in Cultured Cells. Journal of Visualized Experiments, 2014, , .	0.3	1
61	Can we target the α2-macroglobulin–hepcidin interaction to treat pathologic hypoferremia?. Future Medicinal Chemistry, 2014, 6, 13-16.	2.3	0