Rasmus Handberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1784978/publications.pdf

Version: 2024-02-01

98 papers

8,064 citations

41344 49 h-index 85 g-index

100 all docs

100 docs citations

100 times ranked

3342 citing authors

#	Article	IF	Citations
1	MASSES, RADII, AND ORBITS OF SMALL <i>KEPLER</i> PLANETS: THE TRANSITION FROM GASEOUS TO ROCKY PLANETS. Astrophysical Journal, Supplement Series, 2014, 210, 20.	7.7	418
2	Kepler-36: A Pair of Planets with Neighboring Orbits and Dissimilar Densities. Science, 2012, 337, 556-559.	12.6	335
3	ASTEROSEISMIC FUNDAMENTAL PROPERTIES OF SOLAR-TYPE STARS OBSERVED BY THE NASA <i>KEPLER</i> MISSION. Astrophysical Journal, Supplement Series, 2014, 210, 1.	7.7	293
4	Ages and fundamental properties of <i>Kepler</i> exoplanet host stars from asteroseismology. Monthly Notices of the Royal Astronomical Society, 2015, 452, 2127-2148.	4.4	283
5	Ensemble Asteroseismology of Solar-Type Stars with the NASA Kepler Mission. Science, 2011, 332, 213-216.	12.6	267
6	Stellar Spin-Orbit Misalignment in a Multiplanet System. Science, 2013, 342, 331-334.	12.6	262
7	FUNDAMENTAL PROPERTIES OF < i > KEPLER < / i > PLANET-CANDIDATE HOST STARS USING ASTEROSEISMOLOGY. Astrophysical Journal, 2013, 767, 127.	4.5	259
8	Preparation of <i>Kepler</i> light curves for asteroseismic analyses. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 414, L6-L10.	3.3	230
9	Standing on the Shoulders of Dwarfs: the Kepler Asteroseismic LEGACY Sample. II. Radii, Masses, and Ages. Astrophysical Journal, 2017, 835, 173.	4.5	223
10	Kepler-22b: A 2.4 EARTH-RADIUS PLANET IN THE HABITABLE ZONE OF A SUN-LIKE STAR. Astrophysical Journal, 2012, 745, 120.	4.5	218
11	Accurate fundamental parameters and detailed abundance patterns from spectroscopy of 93 solar-type Kepler targetsâ~â€. Monthly Notices of the Royal Astronomical Society, 2012, 423, 122-131.	4.4	200
12	Standing on the Shoulders of Dwarfs: the Kepler Asteroseismic LEGACY Sample. I. Oscillation Mode Parameters. Astrophysical Journal, 2017, 835, 172.	4.5	195
13	A sub-Mercury-sized exoplanet. Nature, 2013, 494, 452-454.	27.8	193
14	Hot super-Earths stripped by their host stars. Nature Communications, 2016, 7, 11201.	12.8	172
15	A UNIFORM ASTEROSEISMIC ANALYSIS OF 22 SOLAR-TYPE STARS OBSERVED BY < i > KEPLER < / i > . Astrophysical Journal, 2012, 749, 152.	4.5	167
16	AN ANCIENT EXTRASOLAR SYSTEM WITH FIVE SUB-EARTH-SIZE PLANETS. Astrophysical Journal, 2015, 799, 170.	4.5	164
17	ASTEROSEISMIC DETERMINATION OF OBLIQUITIES OF THE EXOPLANET SYSTEMS KEPLER-50 AND KEPLER-65. Astrophysical Journal, 2013, 766, 101.	4.5	158
18	A PRECISE ASTEROSEISMIC AGE AND RADIUS FOR THE EVOLVED SUN-LIKE STAR KIC 11026764. Astrophysical Journal, 2010, 723, 1583-1598.	4.5	130

#	Article	IF	CITATIONS
19	Oscillation mode frequencies of 61 main-sequence and subgiant stars observed by <i>Kepler </i> . Astronomy and Astrophysics, 2012, 543, A54.	5.1	126
20	KEPLER-21b: A 1.6 <i>R</i> _{Earth} PLANET TRANSITING THE BRIGHT OSCILLATING F SUBGIANT STAR HD 179070. Astrophysical Journal, 2012, 746, 123.	4.5	124
21	THE ASTEROSEISMIC POTENTIAL OF <i>KEPLER</i> : FIRST RESULTS FOR SOLAR-TYPE STARS. Astrophysical Journal Letters, 2010, 713, L169-L175.	8.3	122
22	The First APOKASC Catalog of Kepler Dwarf and Subgiant Stars. Astrophysical Journal, Supplement Series, 2017, 233, 23.	7.7	121
23	PREDICTING THE DETECTABILITY OF OSCILLATIONS IN SOLAR-TYPE STARS OBSERVED BY <i>KEPLER</i> Astrophysical Journal, 2011, 732, 54.	4.5	118
24	EVIDENCE FOR THE IMPACT OF STELLAR ACTIVITY ON THE DETECTABILITY OF SOLAR-LIKE OSCILLATIONS OBSERVED BY <i>KEPLER</i> . Astrophysical Journal Letters, 2011, 732, L5.	8.3	114
25	K2P ² —A PHOTOMETRY PIPELINE FOR THE K2 MISSION. Astrophysical Journal, 2015, 806, 30.	4.5	110
26	Bayesian peak-bagging of solar-like oscillators using MCMC: a comprehensive guide. Astronomy and Astrophysics, 2011, 527, A56.	5.1	108
27	Asteroseismic inference on rotation, gyrochronology and planetary system dynamics of 16 Cygni. Monthly Notices of the Royal Astronomical Society, 2015, 446, 2959-2966.	4.4	107
28	KEPLER-68: THREE PLANETS, ONE WITH A DENSITY BETWEEN THAT OF EARTH AND ICE GIANTS. Astrophysical Journal, 2013, 766, 40.	4.5	106
29	Oscillation frequencies for 35 <i>Kepler</i> solar-type planet-hosting stars using Bayesian techniques and machine learning. Monthly Notices of the Royal Astronomical Society, 2016, 456, 2183-2195.	4.4	101
30	Confirming chemical clocks: asteroseismic age dissection of the Milky Way disk(s). Monthly Notices of the Royal Astronomical Society, 0 , , .	4.4	95
31	Global asteroseismic properties of solar-like oscillations observed by Kepler: a comparison of complementary analysis methods. Monthly Notices of the Royal Astronomical Society, 2011, 415, 3539-3551.	4.4	93
32	SPIN–ORBIT ALIGNMENT OF EXOPLANET SYSTEMS: ENSEMBLE ANALYSIS USING ASTEROSEISMOLOGY. Astrophysical Journal, 2016, 819, 85.	4.5	91
33	Automated preparation of Kepler time series of planet hosts for asteroseismic analysis. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2698-2709.	4.4	88
34	OSCILLATING RED GIANTS OBSERVED DURING CAMPAIGN 1 OF THE <i>KEPLER</i> K2 MISSION: NEW PROSPECTS FOR GALACTIC ARCHAEOLOGY. Astrophysical Journal Letters, 2015, 809, L3.	8.3	84
35	The first view of \hat{l} l	4.4	78
36	KEPLER-93b: A TERRESTRIAL WORLD MEASURED TO WITHIN 120 km, AND A TEST CASE FOR A NEW <i>SPITZER</i> OBSERVING MODE. Astrophysical Journal, 2014, 790, 12.	4.5	76

#	Article	IF	Citations
37	A Hot Saturn Orbiting an Oscillating Late Subgiant Discovered by TESS. Astronomical Journal, 2019, 157, 245.	4.7	72
38	KEPLER-432: A RED GIANT INTERACTING WITH ONE OF ITS TWO LONG-PERIOD GIANT PLANETS. Astrophysical Journal, 2015, 803, 49.	4.5	70
39	NGC 6819: testing the asteroseismic mass scale, mass loss and evidence for products of non-standard evolution. Monthly Notices of the Royal Astronomical Society, 2017, 472, 979-997.	4.4	70
40	Establishing the accuracy of asteroseismic mass and radius estimates of giant stars – I. Three eclipsing systems at [Fe/H]Ââ^1⁄4Ââ^'0.3 and the need for a large high-precision sample. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3729-3743.	4.4	69
41	That's How We Roll: The NASA <i>K2</i> Mission Science Products and Their Performance Metrics. Publications of the Astronomical Society of the Pacific, 2016, 128, 075002.	3.1	68
42	Asteroseismology from multi-month <i>Kepler</i> photometry: the evolved Sun-like stars KICÂ10273246 and KICÂ10920273. Astronomy and Astrophysics, 2011, 534, A6.	5.1	67
43	First Results from the Hertzsprung SONG Telescope: Asteroseismology of the G5 Subgiant Star μ Herculis*. Astrophysical Journal, 2017, 836, 142.	4.5	66
44	A giant impact as the likely origin of different twins in the Kepler-107 exoplanet system. Nature Astronomy, 2019, 3, 416-423.	10.1	64
45	Detection of solar-like oscillations in relics of the Milky Way: asteroseismology of K giants in M4 using data from the NASA K2 mission. Monthly Notices of the Royal Astronomical Society, 2016, 461, 760-765.	4.4	61
46	PLATO <i>as it is</i> : A legacy mission for Galactic archaeology. Astronomische Nachrichten, 2017, 338, 644-661.	1.2	61
47	SOLAR-LIKE OSCILLATIONS IN KIC 11395018 AND KIC 11234888 FROM 8 MONTHS OF (i) KEPLER (/i) DATA. Astrophysical Journal, 2011, 733, 95.	4.5	60
48	Oscillation mode linewidths of main-sequence and subgiant stars observed by <i>Kepler </i> . Astronomy and Astrophysics, 2012, 537, A134.	5.1	60
49	Asteroseismic inference on the spin-orbit misalignment and stellar parameters of HAT-P-7. Astronomy and Astrophysics, 2014, 570, A54.	5.1	58
50	The Asteroseismic Target List for Solar-like Oscillators Observed in 2 minute Cadence with the Transiting Exoplanet Survey Satellite. Astrophysical Journal, Supplement Series, 2019, 241, 12.	7.7	58
51	THE KEPLER-454 SYSTEM: A SMALL, NOT-ROCKY INNER PLANET, A JOVIAN WORLD, AND A DISTANT COMPANION. Astrophysical Journal, 2016, 816, 95.	4.5	55
52	THE K2-ESPRINT PROJECT. V. A SHORT-PERIOD GIANT PLANET ORBITING A SUBGIANT STAR*. Astronomical Journal, 2016, 152, 143.	4.7	54
53	LIMITS ON SURFACE GRAVITIES OF (i) KEPLER (i) PLANET-CANDIDATE HOST STARS FROM NON-DETECTION OF SOLAR-LIKE OSCILLATIONS. Astrophysical Journal, 2014, 783, 123.	4.5	47
54	Age dating of an early Milky Way merger via asteroseismology of the naked-eye star $\hat{l}\frac{1}{2}$ Indi. Nature Astronomy, 2020, 4, 382-389.	10.1	46

#	Article	IF	CITATIONS
55	ASTEROSEISMIC DIAGRAMS FROM A SURVEY OF SOLAR-LIKE OSCILLATIONS WITH <i>KEPLER</i> Astrophysical Journal Letters, 2011, 742, L3.	8.3	45
56	VERIFICATION OF THE KEPLER INPUT CATALOG FROM ASTEROSEISMOLOGY OF SOLAR-TYPE STARS. Astrophysical Journal Letters, 2011, 738, L28.	8.3	44
57	Oscillation mode linewidths and heights of 23 main-sequence stars observed by <i>Kepler </i> Astronomy and Astrophysics, 2014, 566, A20.	5.1	44
58	Why should we correct reported pulsation frequencies for stellar line-of-sight Doppler velocity shifts?. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 445, L94-L98.	3.3	41
59	CONSTRUCTING A ONE-SOLAR-MASS EVOLUTIONARY SEQUENCE USING ASTEROSEISMIC DATA FROM <i>KEPLER</i> . Astrophysical Journal Letters, 2011, 740, L2.	8.3	37
60	Detection and Characterization of Oscillating Red Giants: First Results from the TESS Satellite. Astrophysical Journal Letters, 2020, 889, L34.	8.3	37
61	Oscillating red giants in eclipsing binary systems: empirical reference value for asteroseismic scaling relation. Monthly Notices of the Royal Astronomical Society, 2018, 478, 4669-4696.	4.4	36
62	Super-Nyquist asteroseismology of solar-like oscillators with Kepler and K2 – expanding the asteroseismic cohort at the base of the red giant branch. Monthly Notices of the Royal Astronomical Society, 2014, 445, 946-954.	4.4	35
63	The Kepler Asteroseismic Investigation: Scientific goals and first results. Astronomische Nachrichten, 2010, 331, 966-971.	1.2	34
64	Fundamental properties of five <i>Kepler</i> stars using global asteroseismic quantities and ground-based observations. Astronomy and Astrophysics, 2012, 537, A111.	5.1	34
65	Testing asteroseismic scaling relations using eclipsing binaries in star clusters and the field. Astronomische Nachrichten, 2016, 337, 793-798.	1.2	33
66	TOI-257b (HD 19916b): a warm sub-saturn orbiting an evolved F-type star. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3704-3722.	4.4	33
67	Study of HD 169392A observed by CoRoT and HARPS. Astronomy and Astrophysics, 2013, 549, A12.	5.1	29
68	<i>Kepler</i> observations of the asteroseismic binary HD 176465. Astronomy and Astrophysics, 2017, 601, A82.	5.1	28
69	TESS Asteroseismology of the Known Red-giant Host Stars HD 212771 and HD 203949. Astrophysical Journal, 2019, 885, 31.	4.5	28
70	Modelling the autocovariance of the power spectrum of a solar-type oscillator. Monthly Notices of the Royal Astronomical Society, 0, 408, 542-550.	4.4	27
71	Asteroseismology of Solar-Type Stars with $\langle i \rangle K2 \langle i \rangle$: Detection of Oscillations in C1 Data. Publications of the Astronomical Society of the Pacific, 2015, 127, 1038-1044.	3.1	25
72	Asteroseismic Properties of Solar-type Stars Observed with the NASA <i>K2</i> Mission: Results from Campaigns $1\hat{a}$ ="3" and Prospects for Future Observations. Publications of the Astronomical Society of the Pacific, 2016, 128, 124204.	3.1	24

#	Article	IF	CITATIONS
73	A simple model to describe intrinsic stellar noise for exoplanet detection around red giants. Monthly Notices of the Royal Astronomical Society, 2017, 465, 1308-1315.	4.4	23
74	CHARACTERIZING TWO SOLAR-TYPEKEPLERSUBGIANTS WITH ASTEROSEISMOLOGY: KIC 10920273 AND KIC 11395018. Astrophysical Journal, 2013, 763, 49.	4.5	22
7 5	Data preparation for asteroseismology with TESS. EPJ Web of Conferences, 2017, 160, 01005.	0.3	21
76	PROSPECTS FOR DETECTING ASTEROSEISMIC BINARIES IN <i>KEPLER</i> DATA. Astrophysical Journal Letters, 2014, 784, L3.	8.3	19
77	Asteroseismology of the Hyades red giant and planet host <i>$^{i}\mu$</i> i Tauri. Astronomy and Astrophysics, 2019, 622, A190.	5.1	19
78	EPICÂ201585823, a rare triple-mode RRÂLyrae star discovered in K2 mission data. Monthly Notices of the Royal Astronomical Society, 2016, 455, 1237-1245.	4.4	18
79	Conducting the SONG: The Robotic Nature and Efficiency of a Fully Automated Telescope. Publications of the Astronomical Society of the Pacific, 2019, 131, 045003.	3.1	18
80	The Evolution of Rotation and Magnetic Activity in 94 Aqr Aa from Asteroseismology with TESS. Astrophysical Journal, 2020, 900, 154.	4.5	18
81	DETECTION OF â," = 4 AND â," = 5 MODES IN 12 YEARS OF SOLAR VIRGO-SPM DATA—TESTS ON <i>KEPLER</i> ONSOBSERVATIONS OF 16 Cyg A AND B. Astrophysical Journal, 2014, 782, 2.	4.5	17
82	Asteroseismology of the Hyades with K2: first detection of main-sequence solar-like oscillations in an open cluster. Monthly Notices of the Royal Astronomical Society, 2016, 463, 2600-2611.	4.4	17
83	<i>TESS</i> cycle 1 observations of roAp stars with 2-min cadence data. Monthly Notices of the Royal Astronomical Society, 2021, 506, 1073-1110.	4.4	16
84	DETECTION OF SOLAR-LIKE OSCILLATIONS, OBSERVATIONAL CONSTRAINTS, AND STELLAR MODELS FOR \hat{l}_s CYG, THE BRIGHTEST STAR OBSERVED BY THE KEPLER MISSION. Astrophysical Journal, 2016, 831, 17.	4.5	14
85	TESS Data for Asteroseismology: Photometry. Astronomical Journal, 2021, 162, 170.	4.7	14
86	Damping rates and frequency corrections of Kepler LEGACY stars. Monthly Notices of the Royal Astronomical Society, 2019, 487, 595-608.	4.4	12
87	TESS Data for Asteroseismology (T'DA) Stellar Variability Classification Pipeline: Setup and Application to the Kepler Q9 Data. Astronomical Journal, 2021, 162, 209.	4.7	10
88	TESS Data for Asteroseismology: Timing Verification < sup>* < /sup>. Astronomical Journal, 2020, 160, 34.	4.7	9
89	TESS Data for Asteroseismology: Light-curve Systematics Correction. Astrophysical Journal, Supplement Series, 2021, 257, 53.	7.7	9
90	Asteroseismology of solarâ€type stars with Kepler I: Data analysis. Astronomische Nachrichten, 2010, 331, 972-976.	1,2	8

#	Article	IF	CITATIONS
91	Oscillation mode linewidths and heights of 23 main-sequence stars observed by <i>Kepler (Corrigendum) </i> Astronomy and Astrophysics, 2016, 595, C2.	5.1	5
92	K2P ² : Reduced data from campaigns 0–4 of the K2 mission. Astronomy and Astrophysics, 2017, 597, A36.	5.1	5
93	Modelling linewidths of Kepler red giants in NGC 6819. Monthly Notices of the Royal Astronomical Society, 2018, 478, 69-80.	4.4	5
94	Peakbagging in the open cluster NGC 6819: Opening a treasure chest or Pandora's box?. Astronomische Nachrichten, 2016, 337, 799-804.	1.2	3
95	Red giant oscillations: Stellar models and mode frequency calculations. Astronomische Nachrichten, 2012, 333, 939-941.	1.2	2
96	Reuse for Research: Curating Astrophysical Datasets for Future Researchers. International Journal of Digital Curation, 2017, 12, 37-46.	0.2	2
97	KOI-3158: The oldest known system of terrestrial-size planets. EPJ Web of Conferences, 2015, 101, 02004.	0.3	1
98	Promoting access to and use of seismic data in a large scientific community. EPJ Web of Conferences, 2017, 160, 01011.	0.3	0