
Simon J. Elsässer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1784514/publications.pdf Version: 2024-02-01

SIMON L FISÃOSED

#	Article	IF	CITATIONS
1	Revisiting sORFs: overcoming challenges to identify and characterize functional microproteins. FEBS Journal, 2022, 289, 53-74.	2.2	57
2	Genome-wide mapping of G-quadruplex structures with CUT&Tag. Nucleic Acids Research, 2022, 50, e13-e13.	6.5	75
3	Distinct transcription kinetics of pluripotent cell states. Molecular Systems Biology, 2022, 18, e10407.	3.2	4
4	Sirtuin-1 sensitive lysine-136 acetylation drives phase separation and pathological aggregation of TDP-43. Nature Communications, 2022, 13, 1223.	5.8	29
5	Cancer cells use self-inflicted DNA breaks to evade growth limits imposed by genotoxic stress. Science, 2022, 376, 476-483.	6.0	27
6	Direct Observation of Na,Kâ€ATPase Oligomers in The Plasma Membrane of Living Cells by FRETâ€FCS. FASEB Journal, 2022, 36, .	0.2	0
7	Polycomb repressive complex 2 shields naÃ⁻ve human pluripotent cells from trophectoderm differentiation. Nature Cell Biology, 2022, 24, 845-857.	4.6	26
8	Towards policies that capture the expected value of biomolecular diversity for drug discovery, human health, and well-being. Biologia Futura, 2021, 72, 119-125.	0.6	0
9	Direct detection of SARS-CoV-2 using non-commercial RT-LAMP reagents on heat-inactivated samples. Scientific Reports, 2021, 11, 1820.	1.6	47
10	Multianalyte serology in home-sampled blood enables an unbiased assessment of the immune response against SARS-CoV-2. Nature Communications, 2021, 12, 3695.	5.8	32
11	The exon-junction complex helicase elF4A3 controls cell fate via coordinated regulation of ribosome biogenesis and translational output. Science Advances, 2021, 7, .	4.7	25
12	Engineered Human Induced Pluripotent Cells Enable Genetic Code Expansion in Brain Organoids. ChemBioChem, 2021, 22, 3208-3213.	1.3	3
13	A Genetically Encoded Picolyl Azide for Improved Live Cell Copper Click Labeling. Frontiers in Chemistry, 2021, 9, 768535.	1.8	4
14	An embryonic stem cell-specific heterochromatin state promotes core histone exchange in the absence of DNA accessibility. Nature Communications, 2020, 11, 5095.	5.8	28
15	Universal Single-Residue Terminal Labels for Fluorescent Live Cell Imaging of Microproteins. Journal of the American Chemical Society, 2020, 142, 20080-20087.	6.6	14
16	Human RTEL1 associates with Poldip3 to facilitate responses to replication stress and R-loop resolution. Genes and Development, 2020, 34, 1065-1074.	2.7	27
17	Site-Specific Incorporation of Two ncAAs for Two-Color Bioorthogonal Labeling and Crosslinking of Proteins on Live Mammalian Cells. Cell Reports, 2020, 31, 107811.	2.9	43
18	Dual Bioorthogonal Labeling of the Amyloid-β Protein Precursor Facilitates Simultaneous Visualization of the Protein and Its Cleavage Products. Journal of Alzheimer's Disease, 2019, 72, 537-548.	1.2	13

Simon J. ElsÃ**y**ser

#	Article	IF	CITATIONS
19	Quantitative Multiplexed ChIP Reveals Global Alterations that Shape Promoter Bivalency in Ground State Embryonic Stem Cells. Cell Reports, 2019, 28, 3274-3284.e5.	2.9	21
20	EvoChromo: towards a synthesis of chromatin biology and evolution. Development (Cambridge), 2019, 146, .	1.2	16
21	Generation of Stable Amber Suppression Cell Lines. Methods in Molecular Biology, 2018, 1728, 237-245.	0.4	14
22	<i>Methanomethylophilus alvus Mx1201</i> Provides Basis for Mutual Orthogonal Pyrrolysyl tRNA/Aminoacyl-tRNA Synthetase Pairs in Mammalian Cells. ACS Chemical Biology, 2018, 13, 3087-3096.	1.6	66
23	Evolution of epigenetic chromatin states. Current Opinion in Chemical Biology, 2017, 41, 36-42.	2.8	12
24	Network analyses identify liverâ€specific targets for treating liver diseases. Molecular Systems Biology, 2017, 13, 938.	3.2	112
25	ElsÃ s ser et al. reply. Nature, 2017, 548, E7-E9.	13.7	7
26	Biodiversity, drug discovery, and the future of global health: Introducing the biodiversity to biomedicine consortium, a call to action. Journal of Global Health, 2017, 7, 020304.	1.2	29
27	Photoactivation of Mutant Isocitrate Dehydrogenase 2 Reveals Rapid Cancer-Associated Metabolic and Epigenetic Changes. Journal of the American Chemical Society, 2016, 138, 718-721.	6.6	39
28	Genetic code expansion in stable cell lines enables encoded chromatin modification. Nature Methods, 2016, 13, 158-164.	9.0	133
29	Critical Role of Histone Turnover in Neuronal Transcription and Plasticity. Neuron, 2015, 87, 77-94.	3.8	257
30	Histone H3.3 is required for endogenous retroviral element silencing in embryonic stem cells. Nature, 2015, 522, 240-244.	13.7	303
31	DAXX co-folds with H3.3/H4 using high local stability conferred by the H3.3 variant recognition residues. Nucleic Acids Research, 2014, 42, 4318-4331.	6.5	32
32	Genetic Encoding of Photocaged Cysteine Allows Photoactivation of TEV Protease in Live Mammalian Cells. Journal of the American Chemical Society, 2014, 136, 2240-2243.	6.6	136
33	Efficient Multisite Unnatural Amino Acid Incorporation in Mammalian Cells via Optimized Pyrrolysyl tRNA Synthetase/tRNA Expression and Engineered eRF1. Journal of the American Chemical Society, 2014, 136, 15577-15583.	6.6	216
34	Proteome labeling and protein identification in specific tissues and at specific developmental stages in an animal. Nature Biotechnology, 2014, 32, 465-472.	9.4	161
35	Hira-Dependent Histone H3.3 Deposition Facilitates PRC2 Recruitment at Developmental Loci in ES Cells. Cell, 2013, 155, 107-120.	13.5	242
36	Co-Folding of the Histone Chaperone DAXX and H3.3/H4. Biophysical Journal, 2013, 104, 29a-30a.	0.2	0

Simon J. ElsÃ**s**ser

#	Article	IF	CITATIONS
37	A common structural theme in histone chaperones mimics interhistone contacts. Trends in Biochemical Sciences, 2013, 38, 333-336.	3.7	6
38	DAXX envelops a histone H3.3–H4 dimer for H3.3-specific recognition. Nature, 2012, 491, 560-565.	13.7	220
39	Towards a mechanism for histone chaperones. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 211-221.	0.9	64
40	Phosphorylation of histone H3 Ser10 establishes a hierarchy for subsequent intramolecular modification events. Nature Structural and Molecular Biology, 2012, 19, 819-823.	3.6	83
41	New Epigenetic Drivers of Cancers. Science, 2011, 331, 1145-1146.	6.0	78
42	Anti-apoptotic Bcl-2 fails to form efficient complexes with pro-apoptotic Bak to protect from Celecoxib-induced apoptosis. Biochemical Pharmacology, 2011, 81, 32-42.	2.0	14
43	HIRA and Daxx Constitute Two Independent Histone H3.3-Containing Predeposition Complexes. Cold Spring Harbor Symposia on Quantitative Biology, 2010, 75, 27-34.	2.0	64
44	Differential effects of anti-apoptotic Bcl-2 family members Mcl-1, Bcl-2, and Bcl-xL on Celecoxib-induced apoptosis. Biochemical Pharmacology, 2010, 79, 10-20.	2.0	39
45	Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14075-14080.	3.3	685
46	New functions for an old variant: no substitute for histone H3.3. Current Opinion in Genetics and Development, 2010, 20, 110-117.	1.5	144
47	Distinct Factors Control Histone Variant H3.3 Localization at Specific Genomic Regions. Cell, 2010, 140, 678-691.	13.5	1,069
48	In situ observation of protein phosphorylation by high-resolution NMR spectroscopy. Nature Structural and Molecular Biology, 2008, 15, 321-329.	3.6	153
49	Importance of Bak for celecoxib-induced apoptosis. Biochemical Pharmacology, 2008, 76, 1082-1096.	2.0	12