
Dina Petranovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1784477/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Innovation trends in industrial biotechnology. Trends in Biotechnology, 2022, 40, 1160-1172.	4.9	30
2	Suppressors of amyloid-Î ² toxicity improve recombinant protein production in yeast by reducing oxidative stress and tuning cellular metabolism. Metabolic Engineering, 2022, 72, 311-324.	3.6	9
3	Dataset for suppressors of amyloid-Î ² toxicity and their functions in recombinant protein production in yeast. Data in Brief, 2022, 42, 108322.	0.5	0
4	Genome-scale modeling drives 70-fold improvement of intracellular heme production in <i>Saccharomyces cerevisiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	29
5	Improved production of human hemoglobin in yeast by engineering hemoglobin degradation. Metabolic Engineering, 2021, 66, 259-267.	3.6	20
6	Development of a method for heat shock stress assessment in yeast based on transcription of specific genes. Yeast, 2021, 38, 549-565.	0.8	0
7	Expression of antibody fragments in Saccharomyces cerevisiae strains evolved for enhanced protein secretion. Microbial Cell Factories, 2021, 20, 134.	1.9	21
8	UBB+1 reduces amyloid-l̂² cytotoxicity by activation of autophagy in yeast. Aging, 2021, 13, 23953-23980.	1.4	2
9	FMN reduces Amyloid-β toxicity in yeast by regulating redox status and cellular metabolism. Nature Communications, 2020, 11, 867.	5.8	50
10	RNAi expression tuning, microfluidic screening, and genome recombineering for improved protein production in <i>Saccharomyces cerevisiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9324-9332.	3.3	54
11	Improving the Production of Cofactor-Containing Proteins: Production of Human Hemoglobin in Yeast. Methods in Molecular Biology, 2019, 1923, 243-264.	0.4	3
12	Engineering the protein secretory pathway of <i>Saccharomyces cerevisiae</i> enables improved protein production. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11025-E11032.	3.3	72
13	Guidelines and recommendations on yeast cell death nomenclature. Microbial Cell, 2018, 5, 4-31.	1.4	158
14	Different Expression Levels of Human Mutant Ubiquitin B+1 (UBB+1) Can Modify Chronological Lifespan or Stress Resistance of Saccharomyces cerevisiae. Frontiers in Molecular Neuroscience, 2018, 11, 200.	1.4	7
15	Balanced trafficking between the ER and the Golgi apparatus increases protein secretion in yeast. AMB Express, 2018, 8, 37.	1.4	21
16	Efficient yeast surface-display of novel complex synthetic cellulosomes. Microbial Cell Factories, 2018, 17, 122.	1.9	33
17	New perspectives from South-Y-East, not all about death A report of the 12th International Meeting on Yeast Apoptosis in Bari, Italy, May 14th-18th, 2017. Microbial Cell, 2018, 5, 112-115.	1.4	0
18	Moderate Expression of <i>SEC16</i> Increases Protein Secretion by Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2017, 83, .	1.4	43

DINA PETRANOVIC

#	Article	IF	CITATIONS
19	Efficient protein production by yeast requires global tuning of metabolism. Nature Communications, 2017, 8, 1131.	5.8	80
20	Probing functional roles of Wilson disease protein (ATP7B) copper-binding domains in yeast. Metallomics, 2017, 9, 981-988.	1.0	12
21	Interplay of Energetics and ER Stress Exacerbates Alzheimer's Amyloid-β (Aβ) Toxicity in Yeast. Frontiers in Molecular Neuroscience, 2017, 10, 232.	1.4	28
22	Role of frameshift ubiquitin B protein in Alzheimer's disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2016, 8, 300-313.	6.6	12
23	The impact of respiration and oxidative stress response on recombinant α-amylase production by Saccharomyces cerevisiae. Metabolic Engineering Communications, 2016, 3, 205-210.	1.9	26
24	Cover Image, Volume 8, Issue 4. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2016, 8, i-i.	6.6	0
25	PUFA-induced cell death is mediated by Yca1p-dependent and -independent pathways, and is reduced by vitamin C in yeast. FEMS Yeast Research, 2016, 16, fow007.	1.1	38
26	Engineering the oxygen sensing regulation results in an enhanced recombinant human hemoglobin production by <i>Saccharomyces cerevisiae</i> . Biotechnology and Bioengineering, 2015, 112, 181-188.	1.7	24
27	Genome-wide expression analyses of the stationary phase model of ageing in yeast. Mechanisms of Ageing and Development, 2015, 149, 65-74.	2.2	11
28	Amyloid-β peptide-induced cytotoxicity and mitochondrial dysfunction in yeast. FEMS Yeast Research, 2015, 15, fov061.	1.1	46
29	Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4689-96.	3.3	138
30	Improving heterologous protein secretion at aerobic conditions by activating hypoxia-induced genes in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2015, 15, fov070.	1.1	13
31	Yeast cell aging and death. FEMS Yeast Research, 2014, 14, 1-1.	1.1	4
32	Approaches to study yeast cell aging and death. FEMS Yeast Research, 2014, 14, 109-118.	1.1	49
33	Management of the endoplasmic reticulum stress by activation of the heat shock response in yeast. FEMS Yeast Research, 2014, 14, 481-494.	1.1	38
34	Balanced globin protein expression and heme biosynthesis improve production of human hemoglobin in Saccharomyces cerevisiae. Metabolic Engineering, 2014, 21, 9-16.	3.6	64
35	Altered sterol composition renders yeast thermotolerant. Science, 2014, 346, 75-78.	6.0	368
36	Impact of protein uptake and degradation on recombinant protein secretion in yeast. Applied Microbiology and Biotechnology, 2014, 98, 7149-7159.	1.7	23

DINA PETRANOVIC

#	Article	IF	CITATIONS
37	Improved Production of a Heterologous Amylase in Saccharomyces cerevisiae by Inverse Metabolic Engineering. Applied and Environmental Microbiology, 2014, 80, 5542-5550.	1.4	29
38	yStreX: yeast stress expression database. Database: the Journal of Biological Databases and Curation, 2014, 2014, .	1.4	13
39	Anaerobic α-Amylase Production and Secretion with Fumarate as the Final Electron Acceptor in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2013, 79, 2962-2967.	1.4	23
40	Correlation of cell growth and heterologous protein production by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2013, 97, 8955-8962.	1.7	41
41	Heat shock response improves heterologous protein secretion in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2013, 97, 3559-3568.	1.7	45
42	yApoptosis: yeast apoptosis database. Database: the Journal of Biological Databases and Curation, 2013, 2013, bat068.	1.4	7
43	Genome-Scale Modeling of the Protein Secretory Machinery in Yeast. PLoS ONE, 2013, 8, e63284.	1.1	71
44	Boolean Model of Yeast Apoptosis as a Tool to Study Yeast and Human Apoptotic Regulations. Frontiers in Physiology, 2012, 3, 446.	1.3	28
45	Pharmaceutical protein production by yeast: towards production of human blood proteins by microbial fermentation. Current Opinion in Biotechnology, 2012, 23, 965-971.	3.3	82
46	Symptomatic atherosclerosis is associated with an altered gut metagenome. Nature Communications, 2012, 3, 1245.	5.8	970
47	Different expression systems for production of recombinant proteins in <i>Saccharomyces cerevisiae</i> . Biotechnology and Bioengineering, 2012, 109, 1259-1268.	1.7	128
48	Systems biology of yeast cell death. FEMS Yeast Research, 2012, 12, 249-265.	1.1	51
49	Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae. FEMS Yeast Research, 2012, 12, 491-510.	1.1	157
50	Engineering of vesicle trafficking improves heterologous protein secretion in Saccharomyces cerevisiae. Metabolic Engineering, 2012, 14, 120-127.	3.6	97
51	Imbalance of heterologous protein folding and disulfide bond formation rates yields runaway oxidative stress. BMC Biology, 2012, 10, 16.	1.7	72
52	Heterologous production of polyunsaturated fatty acids in <i>Saccharomyces cerevisiae</i> causes a global transcriptional response resulting in reduced proteasomal activity and increased oxidative stress. Biotechnology Journal, 2011, 6, 343-356.	1.8	51
53	Prospects for systems biology and modeling of the gut microbiome. Trends in Biotechnology, 2011, 29, 251-258.	4.9	74
54	Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains. Nature Communications, 2010, 1, 145.	5.8	100

DINA PETRANOVIC

#	Article	IF	CITATIONS
55	Prospects of yeast systems biology for human health: integrating lipid, protein and energy metabolism. FEMS Yeast Research, 2010, 10, 1046-1059.	1.1	59
56	Phosphoglycerate Mutase Is a Highly Efficient Enzyme without Flux Control in <i>Lactococcus lactis</i> . Journal of Molecular Microbiology and Biotechnology, 2010, 18, 174-180.	1.0	19
57	Activation of <i>Bacillus subtilis</i> Ugd by the BY-Kinase PtkA Proceeds via Phosphorylation of Its Residue Tyrosine 70. Journal of Molecular Microbiology and Biotechnology, 2009, 17, 83-89.	1.0	23
58	Impact of yeast systems biology on industrial biotechnology. Journal of Biotechnology, 2009, 144, 204-211.	1.9	24
59	The Ser/Thr/Tyr phosphoproteome of <i>Lactococcus lactis</i> IL1403 reveals multiply phosphorylated proteins. Proteomics, 2008, 8, 3486-3493.	1.3	145
60	Insights from site-specific phosphoproteomics in bacteria. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 186-192.	1.1	30
61	Increased biomass yield of <i>Lactococcus lactis</i> during energetically limited growth and respiratory conditions. Biotechnology and Applied Biochemistry, 2008, 50, 25-33.	1.4	39
62	A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nature Biotechnology, 2008, 26, 1155-1160.	9.4	530
63	Can yeast systems biology contribute to the understanding of human disease?. Trends in Biotechnology, 2008, 26, 584-590.	4.9	87
64	Bacillus subtilis strain deficient for the protein-tyrosine kinase PtkA exhibits impaired DNA replication. Molecular Microbiology, 2007, 63, 1797-1805.	1.2	47
65	Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine. Nucleic Acids Research, 2006, 34, 1588-1596.	6.5	122
66	Tunable promoters in systems biology. Current Opinion in Biotechnology, 2005, 16, 329-335.	3.3	54
67	Protein-Tyrosine Phosphorylation in <i>Bacillus subtilis</i> . Journal of Molecular Microbiology and Biotechnology, 2005, 9, 189-197.	1.0	48
68	In Vitro Characterization of the Bacillus subtilis Protein Tyrosine Phosphatase YwqE. Journal of Bacteriology, 2005, 187, 3384-3390.	1.0	49
69	Intracellular effectors regulating the activity of the Lactococcus lactis CodY pleiotropic transcription regulator. Molecular Microbiology, 2004, 53, 613-621.	1.2	90
70	How Tyrosine Phosphorylation Affects the UDP-Glucose Dehydrogenase Activity of <i>Bacillus subtilis </i> YwqF. Journal of Molecular Microbiology and Biotechnology, 2004, 8, 19-25.	1.0	13
71	Photometric assay for measuring the intracellular concentration of branched-chain amino acids in bacteria. Journal of Microbiological Methods, 2004, 56, 133-136.	0.7	5
72	Genetic evidence that the elevated levels of Escherichia coli helicase II antagonize recombinational DNA repair. Biochimie, 2001, 83, 1041-1047.	1.3	18