Honglin Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1784430/publications.pdf

Version: 2024-02-01

414414 471509 1,200 45 17 32 citations h-index g-index papers 47 47 47 1617 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	MicroRNA Expression Abnormalities in Limited Cutaneous Scleroderma and Diffuse Cutaneous Scleroderma. Journal of Clinical Immunology, 2012, 32, 514-522.	3.8	140
2	MicroRNA-21 in Scleroderma Fibrosis and its Function in TGF- \hat{l}^2 - Regulated Fibrosis-Related Genes Expression. Journal of Clinical Immunology, 2013, 33, 1100-1109.	3.8	140
3	The complement system drives local inflammatory tissue priming by metabolic reprogramming of synovial fibroblasts. Immunity, 2021, 54, 1002-1021.e10.	14.3	106
4	Whole-genome transcription and DNA methylation analysis of peripheral blood mononuclear cells identified aberrant gene regulation pathways in systemic lupus erythematosus. Arthritis Research and Therapy, 2016, 18, 162.	3.5	103
5	Autoantigen Microarray for High-throughput Autoantibody Profiling in Systemic Lupus Erythematosus. Genomics, Proteomics and Bioinformatics, 2015, 13, 210-218.	6.9	83
6	MicroRNAs: their involvement in fibrosis pathogenesis and use as diagnostic biomarkers in scleroderma. Experimental and Molecular Medicine, 2013, 45, e41-e41.	7.7	51
7	TGFÎ ² promotes fibrosis by MYST1-dependent epigenetic regulation of autophagy. Nature Communications, 2021, 12, 4404.	12.8	40
8	MicroRNA-202-3p regulates scleroderma fibrosis by targeting matrix metalloproteinase 1. Biomedicine and Pharmacotherapy, 2017, 87, 412-418.	5.6	36
9	The Fibrosis and Immunological Features of Hypochlorous Acid Induced Mouse Model of Systemic Sclerosis. Frontiers in Immunology, 2019, 10, 1861.	4.8	33
10	Using multi-omics methods to understand dermatomyositis/polymyositis. Autoimmunity Reviews, 2017, 16, 1044-1048.	5.8	32
11	Neutrophil-derived exosome from systemic sclerosis inhibits the proliferation and migration of endothelial cells. Biochemical and Biophysical Research Communications, 2020, 526, 334-340.	2.1	27
12	The role of metabolism in the pathogenesis of systemic sclerosis. Metabolism: Clinical and Experimental, 2019, 93, 44-51.	3.4	24
13	HSP25 down-regulation enhanced p53 acetylation by dissociation of SIRT1 from p53 in doxorubicin-induced H9c2 cell apoptosis. Cell Stress and Chaperones, 2016, 21, 251-260.	2.9	21
14	Integration of Genome-Wide DNA Methylation and Transcription Uncovered Aberrant Methylation-Regulated Genes and Pathways in the Peripheral Blood Mononuclear Cells of Systemic Sclerosis. International Journal of Rheumatology, 2018, 2018, 1-19.	1.6	21
15	The roles of neutrophil serine proteinases in idiopathic inflammatory myopathies. Arthritis Research and Therapy, 2018, 20, 134.	3.5	21
16	Systematic approach to understanding the pathogenesis of systemic sclerosis. Clinical Genetics, 2017, 92, 365-371.	2.0	20
17	PGC- $1\hat{i}_{\pm}$ regulates autophagy to promote fibroblast activation and tissue fibrosis. Annals of the Rheumatic Diseases, 2020, 79, 1227-1233.	0.9	19
18	The profiles of miRNAs and IncRNAs in peripheral blood neutrophils exosomes of diffuse cutaneous systemic sclerosis. Journal of Dermatological Science, 2020, 98, 88-97.	1.9	19

#	Article	IF	Citations
19	Interleukin-33 in Systemic Sclerosis: Expression and Pathogenesis. Frontiers in Immunology, 2018, 9, 2663.	4.8	18
20	The function of ncRNAs in rheumatic diseases. Epigenomics, 2019, 11, 821-833.	2.1	18
21	The role of IF135 in lupus nephritis and related mechanisms. Modern Rheumatology, 2017, 27, 1010-1018.	1.8	17
22	The role and mechanism of cathepsin G in dermatomyositis. Biomedicine and Pharmacotherapy, 2017, 94, 697-704.	5.6	16
23	Engrailed 1 coordinates cytoskeletal reorganization to induce myofibroblast differentiation. Journal of Experimental Medicine, $2021, 218, \ldots$	8.5	16
24	Tumor necrosis factor antagonists in the treatment of multicentric reticulohistiocytosis: Current clinical evidence. Molecular Medicine Reports, 2016, 14, 209-217.	2.4	13
25	Integrated comparison of the miRNAome and mRNAome in muscles of dermatomyositis and polymyositis reveals common and specific miRNA–mRNAs. Epigenomics, 2019, 11, 23-33.	2.1	13
26	Recombinant Adenosine Deaminase Ameliorates Inflammation, Vascular Disease, and Fibrosis in Preclinical Models of Systemic Sclerosis. Arthritis and Rheumatology, 2020, 72, 1385-1395.	5.6	13
27	The Role of Immune Cells in the Pathogenesis of Idiopathic Inflammatory Myopathies. , 2021, 12, 247.		13
28	Lipid Metabolism Profiles in Rheumatic Diseases. Frontiers in Pharmacology, 2021, 12, 643520.	3.5	12
29	Plasma exosomal RNAs have potential as both clinical biomarkers and therapeutic targets of dermatomyositis. Rheumatology, 2022, 61, 2672-2681.	1.9	12
30	Global analysis of protein expression in muscle tissues of dermatomyositis/polymyosisits patients demonstrated an association between dysferlin and human leucocyte antigen A. Rheumatology, 2019, 58, 1474-1484.	1.9	11
31	Targeting of canonical WNT signaling ameliorates experimental sclerodermatous chronic graft-versus-host disease. Blood, 2021, 137, 2403-2416.	1.4	11
32	Ubiquitination in Scleroderma Fibrosis and Its Treatment. Frontiers in Immunology, 2018, 9, 2383.	4.8	10
33	Investigation into the cause of mortality in 49 cases of idiopathic inflammatory myopathy: A single center study. Experimental and Therapeutic Medicine, 2016, 11, 885-889.	1.8	9
34	Comparison of soluble urokinase plasminogen activator receptor, soluble triggering receptor expressed on myeloid cells 1, procalcitonin and C-reactive protein in distinguishing concurrent bacterial infection from idiopathic inflammatory myopathy. Rheumatology International, 2017, 37, 585-592.	3.0	8
35	Deep sequencing reveals a DAP1 regulatory haplotype that potentiates autoimmunity in systemic lupus erythematosus. Genome Biology, 2020, 21, 281.	8.8	8
36	The Expression of Cytokine Profiles and Related Receptors in Idiopathic Inflammatory Myopathies. Frontiers in Pharmacology, 2022, 13, 852055.	3.5	7

Honglin Zhu

#	Article	IF	CITATION
37	Increased Serum Matrix Metalloproteinase-9 Levels are Associated with Anti-Jo1 but not Anti-MDA5 in Myositis Patients. , 2019, 10, 746.		6
38	The altered metabolism profile in pathogenesis of idiopathic inflammatory myopathies. Seminars in Arthritis and Rheumatism, 2020, 50, 627-635.	3.4	6
39	The Functional Roles of RNAs Cargoes Released by Neutrophil-Derived Exosomes in Dermatomyositis. Frontiers in Pharmacology, 2021, 12, 727901.	3.5	6
40	Discovery of Key Genes in Dermatomyositis Based on the Gene Expression Omnibus Database. DNA and Cell Biology, 2018, 37, 982-992.	1.9	5
41	Mortality trend of inpatients with connective tissue diseases: 2005-2014. Journal of Central South University (Medical Sciences), 2017, 42, 927-933.	0.1	4
42	Machine Learning Algorithms Identify Clinical Subtypes and Cancer in Anti-TIF1γ+ Myositis: A Longitudinal Study of 87 Patients. Frontiers in Immunology, 2022, 13, 802499.	4.8	4
43	X-linked inhibitor of apoptosis protein (XIAP) inhibition in systemic sclerosis (SSc). Annals of the Rheumatic Diseases, 2021, 80, 1048-1056.	0.9	3
44	Contributions of Immune Cells and Stromal Cells to the Pathogenesis of Systemic Sclerosis: Recent Insights. Frontiers in Pharmacology, 2022, 13, 826839.	3.5	3
45	Risk factors for serious infections in inpatients with systemic lupus erythematosus. Journal of Central South University (Medical Sciences), 2021, 46, 704-710.	0.1	0