
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1783933/publications.pdf Version: 2024-02-01

Ιμανις-Ημα Γιμ

#	Article	IF	CITATIONS
1	Calixarene-based supramolecular polymerization in solution. Chemical Society Reviews, 2012, 41, 5907.	38.1	559
2	Supramolecular Chemistry of <i>p</i> -Sulfonatocalix[<i>n</i>]arenes and Its Biological Applications. Accounts of Chemical Research, 2014, 47, 1925-1934.	15.6	518
3	Cyclodextrin-based bioactive supramolecular assemblies. Chemical Society Reviews, 2010, 39, 495-505.	38.1	440
4	Cholinesterase-Responsive Supramolecular Vesicle. Journal of the American Chemical Society, 2012, 134, 10244-10250.	13.7	390
5	Cooperative Binding and Multiple Recognition by Bridged Bis(β-cyclodextrin)s with Functional Linkers. Accounts of Chemical Research, 2006, 39, 681-691.	15.6	293
6	Multistimuli Responsive Supramolecular Vesicles Based on the Recognition of <i>p</i> -Sulfonatocalixarene and its Controllable Release of Doxorubicin. ACS Nano, 2011, 5, 2880-2894.	14.6	284
7	Cyclodextrinâ€Based Multistimuliâ€Responsive Supramolecular Assemblies and Their Biological Functions. Advanced Materials, 2020, 32, e1806158.	21.0	253
8	Efficient Roomâ€Temperature Phosphorescence of a Solidâ€State Supramolecule Enhanced by Cucurbit[6]uril. Angewandte Chemie - International Edition, 2019, 58, 6028-6032.	13.8	250
9	A Supramolecular Artificial Lightâ€Harvesting System with an Ultrahigh Antenna Effect. Advanced Materials, 2017, 29, 1701905.	21.0	209
10	Supramolecular Assembly of Perylene Bisimide with <i>β</i> â€Cyclodextrin Grafts as a Solidâ€State Fluorescence Sensor for Vapor Detection. Advanced Functional Materials, 2009, 19, 2230-2235.	14.9	192
11	Selective binding behaviors of p-sulfonatocalixarenes in aqueous solution. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2008, 62, 1-21.	1.6	187
12	Ultralong purely organic aqueous phosphorescence supramolecular polymer for targeted tumor cell imaging. Nature Communications, 2020, 11, 4655.	12.8	186
13	Supramolecular Purely Organic Room-Temperature Phosphorescence. Accounts of Chemical Research, 2021, 54, 3403-3414.	15.6	179
14	Construction of a Graphene Oxide Based Noncovalent Multiple Nanosupramolecular Assembly as a Scaffold for Drug Delivery. Chemistry - A European Journal, 2012, 18, 4208-4215.	3.3	175
15	Mechanically selflocked chiral gemini-catenanes. Nature Communications, 2015, 6, 7590.	12.8	172
16	In Situ Photoconversion of Multicolor Luminescence and Pure White Light Emission Based on Carbon Dot-Supported Supramolecular Assembly. Journal of the American Chemical Society, 2019, 141, 6583-6591.	13.7	165
17	Supramolecular Pins with Ultralong Efficient Phosphorescence. Advanced Materials, 2021, 33, e2007476.	21.0	158
18	Assembly and Applications of Macrocyclic-Confinement-Derived Supramolecular Organic Luminescent Emissions from Cucurbiturils. Chemical Reviews, 2022, 122, 9032-9077.	47.7	157

#	Article	IF	CITATIONS
19	A Synergistic Enhancement Strategy for Realizing Ultralong and Efficient Roomâ€Temperature Phosphorescence. Angewandte Chemie - International Edition, 2020, 59, 18748-18754.	13.8	148
20	Supramolecular Architectures of β-Cyclodextrin-Modified Chitosan and Pyrene Derivatives Mediated by Carbon Nanotubes and Their DNA Condensation. Journal of the American Chemical Society, 2008, 130, 10431-10439.	13.7	145
21	Dual-Stimulus Luminescent Lanthanide Molecular Switch Based on an Unsymmetrical Diarylperfluorocyclopentene. Journal of the American Chemical Society, 2013, 135, 10190-10193.	13.7	145
22	Polymeric Rotaxane Constructed from the Inclusion Complex of β-Cyclodextrin and 4,4′-Dipyridine by Coordination with Nickel(II) Ions. Angewandte Chemie - International Edition, 2003, 42, 3260-3263.	13.8	143
23	Highly Effective Binding of Viologens by <i>p</i> -Sulfonatocalixarenes for the Treatment of Viologen Poisoning. Journal of Medicinal Chemistry, 2009, 52, 6402-6412.	6.4	142
24	Reversibly Photoswitchable Supramolecular Assembly and Its Application as a Photoerasable Fluorescent Ink. Advanced Materials, 2017, 29, 1605271.	21.0	137
25	Electrochemical stimulus-responsive supramolecular polymer based on sulfonatocalixarene and viologen dimers. Chemical Communications, 2010, 46, 2620.	4.1	133
26	Ultralong room-temperature phosphorescence of a solid-state supramolecule between phenylmethylpyridinium and cucurbit[6]uril. Chemical Science, 2019, 10, 7773-7778.	7.4	133
27	A Twinâ€Axial Hetero[7]rotaxane. Angewandte Chemie - International Edition, 2011, 50, 10834-10838.	13.8	132
28	Photomodulated Fluorescence of Supramolecular Assemblies of Sulfonatocalixarenes and Tetraphenylethene. ACS Nano, 2014, 8, 1609-1618.	14.6	128
29	Supramolecular Assemblies with Nearâ€Infrared Emission Mediated in Two Stages by Cucurbituril and Amphiphilic Calixarene for Lysosomeâ€Targeted Cell Imaging. Angewandte Chemie - International Edition, 2018, 57, 12519-12523.	13.8	125
30	Photolysis of an Amphiphilic Assembly by Calixarene-Induced Aggregation. Journal of the American Chemical Society, 2015, 137, 4543-4549.	13.7	120
31	Photooxidation-Driven Purely Organic Room-Temperature Phosphorescent Lysosome-Targeted Imaging. Journal of the American Chemical Society, 2021, 143, 13887-13894.	13.7	117
32	Self-Assembly of Amphiphilic Peryleneâ^'Cyclodextrin Conjugate and Vapor Sensing for Organic Amines. Journal of Organic Chemistry, 2010, 75, 7258-7264.	3.2	113
33	Photocontrolled Reversible Conversion of Nanotube and Nanoparticle Mediated by β yclodextrin Dimers. Angewandte Chemie - International Edition, 2015, 54, 9376-9380.	13.8	111
34	Complexation-Induced Transition of Nanorod to Network Aggregates:Â Alternate Porphyrin and Cyclodextrin Arrays. Journal of the American Chemical Society, 2008, 130, 600-605.	13.7	108
35	Controllable macrocyclic supramolecular assemblies in aqueous solution. Science China Chemistry, 2018, 61, 979-992.	8.2	108
36	Catalytic Enantiodifferentiating Photocyclodimerization of 2â€Anthracenecarboxylic Acid Mediated by a Non‣ensitizing Chiral Metallosupramolecular Host. Angewandte Chemie - International Edition, 2009, 48, 6675-6677.	13.8	104

#	Article	IF	CITATIONS
37	Targeted Polysaccharide Nanoparticle for Adamplatin Prodrug Delivery. Journal of Medicinal Chemistry, 2013, 56, 9725-9736.	6.4	98
38	Tunable Luminescent Lanthanide Supramolecular Assembly Based on Photoreaction of Anthracene. Journal of the American Chemical Society, 2017, 139, 7168-7171.	13.7	98
39	The Structure and Thermodynamics of Calix[n]arene Complexes with Dipyridines and Phenanthroline in Aqueous Solution Studied by Microcalorimetry and NMR Spectroscopy. Journal of Physical Chemistry B, 2006, 110, 3428-3434.	2.6	97
40	Dual Supramolecular Photochirogenesis: Ultimate Stereocontrol of Photocyclodimerization by a Chiral Scaffold and Confining Host. Journal of the American Chemical Society, 2011, 133, 13786-13789.	13.7	97
41	Organic supramolecular aggregates based on waterâ€soluble cyclodextrins and calixarenes. Aggregate, 2020, 1, 31-44.	9.9	97
42	pH-Controlled Intramolecular Charge-Transfer Behavior in Bistable [3]Rotaxane. Organic Letters, 2010, 12, 1728-1731.	4.6	96
43	Cucurbiturilâ€Based Biomacromolecular Assemblies. Angewandte Chemie - International Edition, 2021, 60, 3870-3880.	13.8	96
44	Photoâ€Controlled Reversible Microtubule Assembly Mediated by Paclitaxelâ€Modified Cyclodextrin. Angewandte Chemie - International Edition, 2018, 57, 8649-8653.	13.8	91
45	Tunable Supramolecular Assembly and Photoswitchable Conversion of Cyclodextrin/Diphenylalanineâ€Based 1D and 2D Nanostructures. Angewandte Chemie - International Edition, 2017, 56, 7062-7065.	13.8	88
46	Turn-On Supramolecular Host-Guest Nanosystems as Theranostics for Cancer. CheM, 2019, 5, 553-574.	11.7	87
47	Multicharged cyclodextrin supramolecular assemblies. Chemical Society Reviews, 2022, 51, 4786-4827.	38.1	87
48	Polysaccharide-Gold Nanocluster Supramolecular Conjugates as a Versatile Platform for the Targeted Delivery of Anticancer Drugs. Scientific Reports, 2014, 4, 4164.	3.3	86
49	Multidimensional nanoarchitectures based on cyclodextrins. Chemical Communications, 2010, 46, 5622.	4.1	83
50	A polycation-induced secondary assembly of amphiphilic calixarene and its multi-stimuli responsive gelation behavior. Chemical Communications, 2015, 51, 1647-1649.	4.1	83
51	A supramolecular approach to fabricate highly emissive smart materials. Scientific Reports, 2013, 3, 2372.	3.3	80
52	Photo-responsive cyclodextrin/anthracene/Eu ³⁺ supramolecular assembly for a tunable photochromic multicolor cell label and fluorescent ink. Chemical Science, 2019, 10, 3346-3352.	7.4	79
53	Ultrahigh Supramolecular Cascaded Roomâ€Temperature Phosphorescence Capturing System. Angewandte Chemie - International Edition, 2021, 60, 27171-27177.	13.8	79
54	Calixarene/pillararene-based supramolecular selective binding and molecular assembly. Chinese Chemical Letters, 2019, 30, 1190-1197.	9.0	77

#	Article	IF	CITATIONS
55	Magnetism and photo dual-controlled supramolecular assembly for suppression of tumor invasion and metastasis. Science Advances, 2018, 4, eaat2297.	10.3	76
56	Synthesis and Molecular Recognition of Novel Oligo(ethylenediamino) Bridged Bis(β-cyclodextrin)s and Their Copper(II) Complexes: Enhanced Molecular Binding Ability and Selectivity by Multiple Recognition. Chemistry - A European Journal, 2001, 7, 1281-1288.	3.3	73
57	Tunable white-light emission by supramolecular self-sorting in highly swollen hydrogels. Chemical Communications, 2018, 54, 200-203.	4.1	73
58	Reversible and Selective Sensing of Aniline Vapor by Perylene-Bridged Bis(cyclodextrins) Assembly. Journal of Organic Chemistry, 2011, 76, 6101-6107.	3.2	72
59	Quinolinotriazole-β-cyclodextrin and its adamantanecarboxylic acid complex as efficient water-soluble fluorescent Cd2+ sensors. Bioorganic and Medicinal Chemistry, 2010, 18, 1415-1420.	3.0	70
60	Exploiting racemism enhanced organic room-temperature phosphorescence to demonstrate Wallach's rule in the lighting chiral chromophores. Nature Communications, 2020, 11, 2145.	12.8	70
61	A highly efficient light-harvesting system with sequential energy transfer based on a multicharged supramolecular assembly. Chemical Communications, 2020, 56, 5949-5952.	4.1	69
62	Cucurbiturilâ€Based Biomacromolecular Assemblies. Angewandte Chemie, 2021, 133, 3914-3924.	2.0	69
63	Purely organic light-harvesting phosphorescence energy transfer by β-cyclodextrin pseudorotaxane for mitochondria targeted imaging. Chemical Science, 2021, 12, 1851-1857.	7.4	69
64	Controlled Molecular Self-Assembly Behaviors between Cucurbituril and Bispyridinium Derivatives. Journal of Organic Chemistry, 2011, 76, 4682-4685.	3.2	68
65	Unique Fluorescence Behavior of Rhodamine B upon Inclusion Complexation with Novel Bis(l²-cyclodextrin-6-yl) 2,2â€~-Bipyridine-4,4â€~-dicarboxylate. Organic Letters, 2001, 3, 1657-1660.	4.6	67
66	Inclusion Complexation and Solubilization of Paclitaxel by Bridged Bis(β-cyclodextrin)s Containing a Tetraethylenepentaamino Spacer. Journal of Medicinal Chemistry, 2003, 46, 4634-4637.	6.4	67
67	Construction and Functions of Cyclodextrinâ€Based 1D Supramolecular Strands and their Secondary Assemblies. Advanced Materials, 2015, 27, 5403-5409.	21.0	67
68	A Dynamic Tetracationic Macrocycle Exhibiting Photoswitchable Molecular Encapsulation. Journal of the American Chemical Society, 2019, 141, 1280-1289.	13.7	66
69	Supramolecular Polypseudorotaxane with Conjugated Polyazomethine Prepared Directly from Two Inclusion Complexes of β-Cyclodextrin with Tolidine and Phthaldehyde. Macromolecules, 2004, 37, 6362-6369.	4.8	65
70	Cucurbiturilâ€Modulated Supramolecular Assemblies: From Cyclic Oligomers to Linear Polymers. Chemistry - A European Journal, 2012, 18, 5087-5095.	3.3	62
71	A small-sized graphene oxide supramolecular assembly for targeted delivery of camptothecin. Chemical Communications, 2014, 50, 13066-13069.	4.1	62
72	Reversible photo-gated transmembrane channel assembled from an acylhydrazone-containing crown ether triad. Chemical Communications, 2017, 53, 3681-3684.	4.1	62

#	Article	IF	CITATIONS
73	Roomâ€Temperature Phosphorescence and Reversible White Light Switch Based on a Cyclodextrin Polypseudorotaxane Xerogel. Advanced Optical Materials, 2019, 7, 1900589.	7.3	62
74	Efficient Roomâ€Temperature Phosphorescence of a Solidâ€State Supramolecule Enhanced by Cucurbit[6]uril. Angewandte Chemie, 2019, 131, 6089-6093.	2.0	62
75	Supramolecular Self-Assemblies ofβ-Cyclodextrins with Aromatic Tethers: Factors Governing the Helical Columnar versus Linear Channel Superstructures. Journal of Organic Chemistry, 2003, 68, 8345-8352.	3.2	61
76	Effective Enlargement of Fluorescence Resonance Energy Transfer of Poly-Porphyrin Mediated by β-Cyclodextrin Dimers. Journal of Organic Chemistry, 2010, 75, 3600-3607.	3.2	61
77	Amphiphilic p-Sulfonatocalix[4]arene as "Drug Chaperone―for Escorting Anticancer Drugs. Scientific Reports, 2015, 5, 9019.	3.3	61
78	Tunable Nanosupramolecular Aggregates Mediated by Host–Guest Complexation. Angewandte Chemie - International Edition, 2016, 55, 11452-11456.	13.8	61
79	Enzyme-responsive sulfatocyclodextrin/prodrug supramolecular assembly for controlled release of anti-cancer drug chlorambucil. Chemical Communications, 2019, 55, 953-956.	4.1	59
80	Noncovalent Polymerizationâ€Activated Ultrastrong Nearâ€Infrared Roomâ€Temperature Phosphorescence Energy Transfer Assembly in Aqueous Solution. Advanced Materials, 2022, 34, .	21.0	58
81	Cooperative Multipoint Recognition of Organic Dyes by Bis(-cyclodextrin)s with 2,2′-Bipyridine-4,4′-dicarboxy Tethers. Chemistry - A European Journal, 2001, 7, 2528-2535.	3.3	57
82	A Heterowheel [3]Pseudorotaxane by Integrating β-Cyclodextrin and Cucurbit[8]uril Inclusion Complexes. Organic Letters, 2011, 13, 856-859.	4.6	57
83	Supramolecular ternary polymer mediated by cucurbituril and cyclodextrin. Polymer Chemistry, 2013, 4, 4192.	3.9	57
84	Tunable Secondâ€Level Roomâ€Temperature Phosphorescence of Solid Supramolecules between Acrylamide–Phenylpyridium Copolymers and Cucurbit[7]uril. Angewandte Chemie - International Edition, 2022, 61, .	13.8	57
85	Supramolecular assembly confined purely organic room temperature phosphorescence and its biological imaging. Chemical Science, 2022, 13, 7976-7989.	7.4	57
86	Enzyme-responsive supramolecular polymers by complexation of bis(p-sulfonatocalixarenes) with suberyl dicholine-based pseudorotaxane. Chemical Communications, 2013, 49, 6779.	4.1	55
87	Enzyme-responsive protein/polysaccharide supramolecular nanoparticles. Soft Matter, 2015, 11, 2488-2493.	2.7	55
88	Light-controlled reversible self-assembly of nanorod suprastructures. Chemical Communications, 2017, 53, 6089-6092.	4.1	55
89	A highly efficient supramolecular photoswitch for singlet oxygen generation in water. Chemical Communications, 2016, 52, 7966-7969.	4.1	53
90	Reversibly Tunable White-Light Emissions of Styrylpyridiniums with Cucurbiturils in Aqueous Solution. Organic Letters, 2017, 19, 6650-6653.	4.6	53

#	Article	IF	CITATIONS
91	A tumor-targeting Ru/polysaccharide/protein supramolecular assembly with high photodynamic therapy ability. Chemical Communications, 2019, 55, 3148-3151.	4.1	53
92	Sulfonato-β-Cyclodextrin Mediated Supramolecular Nanoparticle for Controlled Release of Berberine. ACS Applied Materials & Interfaces, 2018, 10, 24987-24992.	8.0	51
93	Binding Behaviors of <i>p</i> -Sulfonatocalix[4]arene with Gemini Guests. Journal of Physical Chemistry B, 2013, 117, 1978-1987.	2.6	50
94	Bridged Bis(β-cyclodextrin)s Possessing Coordinated Metal Center(s) and Their Inclusion Complexation Behavior with Model Substrates:Â Enhanced Molecular Binding Ability by Multiple Recognition. Journal of Organic Chemistry, 2001, 66, 8518-8527.	3.2	49
95	Linear Polypseudorotaxanes Possessing Many Metal Centers Constructed from Inclusion Complexes ofα-,β-, andγ-Cyclodextrins with 4,4â€~-Dipyridine. Inorganic Chemistry, 2006, 45, 3014-3022.	4.0	49
96	A polysaccharide/tetraphenylethylene-mediated blue-light emissive and injectable supramolecular hydrogel. Chinese Chemical Letters, 2018, 29, 84-86.	9.0	49
97	Molecular recognition and biological application of modified β-cyclodextrins. Science China Chemistry, 2019, 62, 549-560.	8.2	48
98	Interconversion between [5]Pseudorotaxane and [3]Pseudorotaxane by Pasting/Detaching Two Axle Molecules. Journal of Organic Chemistry, 2011, 76, 8270-8276.	3.2	47
99	Binding Ability and Self-Assembly Behavior of Linear Polymeric Supramolecules Formed by ModifiedÎ ² -Cyclodextrin. Organic Letters, 2003, 5, 251-254.	4.6	46
100	Targeted Polypeptide–Microtubule Aggregation with Cucurbit[8]uril for Enhanced Cell Apoptosis. Angewandte Chemie - International Edition, 2019, 58, 10553-10557.	13.8	46
101	Polysaccharide-based Noncovalent Assembly for Targeted Delivery of Taxol. Scientific Reports, 2016, 6, 19212.	3.3	44
102	Interlocked Bis(polyrotaxane) of Cyclodextrinâ^'Porphyrin Systems Mediated by Fullerenes. Macromolecules, 2005, 38, 9095-9099.	4.8	42
103	Specifically Monitoring Butyrylcholinesterase by Supramolecular Tandem Assay. Chemistry - A European Journal, 2013, 19, 8755-8759.	3.3	42
104	Reversible Emitting Anti ounterfeiting Ink Prepared by Anthraquinoneâ€Modified <i>β</i> â€Cyclodextrin Supramolecular Polymer. Advanced Science, 2020, 7, 2000803.	11.2	42
105	Wavelength-controlled supramolecular photocyclodimerization of anthracenecarboxylate mediated by Î ³ -cyclodextrins. Chemical Communications, 2011, 47, 6849.	4.1	41
106	Multistimuliâ€Responsive Supramolecular Assembly of Cucurbituril/Cyclodextrin Pairs with an Azobenzene ontaining Bispyridinium Guest. Chemistry - A European Journal, 2014, 20, 15108-15115.	3.3	41
107	Controllable Singlet Oxygen Generation in Water Based on Cyclodextrin Secondary Assembly for Targeted Photodynamic Therapy. Biomacromolecules, 2020, 21, 5369-5379.	5.4	41
108	A Reversible Luminescent Lanthanide Switch Based on a Dibenzo[24]-Crown-8â^'Dipicolinic Acid Conjugate. Organic Letters, 2008, 10, 5557-5560.	4.6	40

#	Article	IF	CITATIONS
109	Photo/chemo dual-controlled reversible morphological conversion and chiral modulation of supramolecular nanohelixes with nanosquares and nanofibers. Chemical Communications, 2016, 52, 14274-14277.	4.1	40
110	Thermodynamic Origin of Selective Binding of β-Cyclodextrin Derivatives with Chiral Chromophoric Substituents toward Steroids. Journal of Physical Chemistry B, 2010, 114, 16147-16155.	2.6	39
111	Macrocycle crosslinked mesoporous polymers for ultrafast separation of organic dyes. Chemical Communications, 2018, 54, 7362-7365.	4.1	39
112	Sulfonatocalix[4]arene-based light-harvesting amphiphilic supramolecular assemblies for sensing sulfites in cells. Journal of Materials Chemistry C, 2021, 9, 1958-1965.	5.5	39
113	Controllable DNA condensation through cucurbit[6]uril in 2D pseudopolyrotaxanes. Chemical Communications, 2007, , 3374.	4.1	38
114	Controlled Photophysical Behaviors between Dibenzo-24-crown-8 Bearing Terpyridine Moiety and Fullerene-Containing Ammonium Salt. Journal of Organic Chemistry, 2011, 76, 1910-1913.	3.2	38
115	Dual Visible Lightâ€Triggered Photoswitch of a Diarylethene Supramolecular Assembly with Cucurbit[8]uril. Chemistry - A European Journal, 2017, 23, 14425-14429.	3.3	38
116	Photo ontrollable Catalysis and Chiral Monosaccharide Recognition Induced by Cyclodextrin Derivatives. Angewandte Chemie - International Edition, 2021, 60, 7654-7658.	13.8	37
117	Multifunctional Vehicle of Amphiphilic Calix[4]arene Mediated by Liposome. Chemistry of Materials, 2015, 27, 2848-2854.	6.7	36
118	Mechanical Behaviors of Highly Swollen Supramolecular Hydrogels Mediated by Pseudorotaxanes. Macromolecules, 2017, 50, 1141-1146.	4.8	36
119	High-Efficiency Synergistic Effect of Supramolecular Nanoparticles Based on Cyclodextrin Prodrug on Cancer Therapy. Biomacromolecules, 2020, 21, 4998-5007.	5.4	35
120	High-efficiency dynamic sensing of biothiols in cancer cells with a fluorescent β-cyclodextrin supramolecular assembly. Chemical Science, 2020, 11, 4791-4800.	7.4	35
121	The complexation thermodynamics of light lanthanides by crown ethers. Coordination Chemistry Reviews, 2000, 200-202, 53-73.	18.8	34
122	Polysaccharide Nanoparticles for Efficient siRNA Targeting in Cancer Cells by Supramolecular pKa Shift. Scientific Reports, 2016, 6, 28848.	3.3	34
123	A cucurbituril/polysaccharide/carbazole ternary supramolecular assembly for targeted cell imaging. Chemical Communications, 2019, 55, 4343-4346.	4.1	34
124	Photocontrolled Lightâ€Harvesting Supramolecular Assembly Based on Aggregationâ€Induced Excimer Emission. Advanced Optical Materials, 2021, 9, 2001702.	7.3	34
125	Supramolecular polymeric vesicles formed by p-sulfonatocalix[4]arene and chitosan with multistimuli responses. Soft Matter, 2015, 11, 290-296.	2.7	33
126	Optically Switchable Luminescent Hydrogel by Synergistically Intercalating Photochromic Molecular Rotor into Inorganic Clay. Advanced Optical Materials, 2017, 5, 1700149.	7.3	33

#	Article	IF	CITATIONS
127	Controlled Photoerasable Fluorescent Behaviors with Dithienylethene-Based Molecular Turnstile. ACS Applied Materials & Interfaces, 2018, 10, 12135-12140.	8.0	33
128	Multistimuli-Responsive and Photocontrolled Supramolecular Luminescent Gels Constructed by Anthracene-Bridged Bis(dibenzo-24-crown-8) with Secondary Ammonium Salt Polymer. ACS Applied Materials & Interfaces, 2019, 11, 16117-16122.	8.0	33
129	Cucurbit[8]uril-mediated phosphorescent supramolecular foldamer for antibiotics sensing in water and cells. Chinese Chemical Letters, 2022, 33, 851-854.	9.0	33
130	Polysaccharide-Based Supramolecular Hydrogel for Efficiently Treating Bacterial Infection and Enhancing Wound Healing. Biomacromolecules, 2021, 22, 534-539.	5.4	33
131	Uncommon Supramolecular Phosphorescenceâ€Capturing Assembly Based on Cucurbit[8]urilâ€Mediated Molecular Folding for Nearâ€Infrared Lysosome Imaging. Small, 2022, 18, e2104514.	10.0	33
132	Glucose-Activated Nanoconfinement Supramolecular Cascade Reaction <i>in Situ</i> for Diabetic Wound Healing. ACS Nano, 2022, 16, 9929-9937.	14.6	33
133	Bundle-Shaped Cyclodextrinâ^'Tb Nano-Supramolecular Assembly Mediated by C60:Â Intramolecular Energy Transfer. Nano Letters, 2006, 6, 2196-2200.	9.1	32
134	Hierarchical Organization of Spherical Assembly with Reversibly Photocontrollable Cross-Links. Journal of Organic Chemistry, 2013, 78, 5110-5114.	3.2	32
135	A Supramolecular Tubular Nanoreactor. Chemistry - A European Journal, 2014, 20, 8566-8570.	3.3	32
136	Highly Elastic Slideâ€Ring Hydrogel with Good Recovery as Stretchable Supercapacitor. Chemistry - A European Journal, 2020, 26, 14080-14084.	3.3	32
137	Supramolecular Assembly with Nearâ€Infrared Emission for Twoâ€Photon Mitochondrial Targeted Imaging. Small, 2021, 17, e2101185.	10.0	32
138	Binding Ability and Assembly Behavior ofβ-Cyclodextrin Complexes with 2,2â€~-Dipyridine and 4,4â€~-Dipyridine. Journal of Organic Chemistry, 2004, 69, 3383-3390.	3.2	31
139	Rigid Organization of Fluorescence-Active Ligands by Artificial Macrocyclic Receptor to Achieve the Thioflavin T-Amyloid Fibril Level Association. Journal of Physical Chemistry B, 2016, 120, 3932-3940.	2.6	31
140	Cucurbituril-activated photoreaction of dithienylethene for controllable targeted lysosomal imaging and anti-counterfeiting. Materials Horizons, 2021, 8, 2494-2502.	12.2	30
141	Highly Reversible Supramolecular Light Switch for NIR Phosphorescence Resonance Energy Transfer. Advanced Science, 2022, 9, e2103041.	11.2	30
142	Multivalent supramolecular assembly with ultralong organic room temperature phosphorescence, high transfer efficiency and ultrahigh antenna effect in water. Chemical Science, 2022, 13, 573-579.	7.4	30
143	A Highly Efficient Phosphorescence/Fluorescence Supramolecular Switch Based on a Bromoisoquinoline Cascaded Assembly in Aqueous Solution. Advanced Science, 2022, 9, e2200524.	11.2	30
144	Twoâ€Photon Excited Nearâ€Infrared Phosphorescence Based on Secondary Supramolecular Confinement. Advanced Science, 2022, 9, e2201182.	11.2	30

JIANG-HUA LIU

#	Article	IF	CITATIONS
145	Effect of β-Cyclodextrin Charge Type on the Molecular Recognition Thermodynamics of Reactions with (Ferrocenylmethyl)dimethylaminium Derivatives. Journal of Physical Chemistry B, 2008, 112, 1445-1450.	2.6	29
146	Supramolecular Assembly with Multiple Preorganised Ï€â€Electronic Cages. Chemistry - A European Journal, 2013, 19, 96-100.	3.3	29
147	2D organic–inorganic nanosheets <i>via</i> self-assembly of a pillar[6]arene and polyoxometalate for enhanced degradation efficiency. Chemical Communications, 2018, 54, 6284-6287.	4.1	29
148	Supramolecular nanoparticles based on \hat{l}^2 -CD modified hyaluronic acid for DNA encapsulation and controlled release. Chemical Communications, 2018, 54, 8713-8716.	4.1	29
149	Two-dimensional supramolecular assemblies based on β-cyclodextrin-grafted graphene oxide for mitochondrial dysfunction and photothermal therapy. Chemical Communications, 2019, 55, 12200-12203.	4.1	29
150	Directional Water Transfer Janus Nanofibrous Porous Membranes for Particulate Matter Filtration and Volatile Organic Compound Adsorption. ACS Applied Materials & Interfaces, 2021, 13, 3109-3118.	8.0	29
151	The construction of a supramolecular polymeric rotaxane from bipyridine-ruthenium and cyclodextrin. Chemical Communications, 2005, , 1702.	4.1	28
152	Polysaccharide–porphyrin–fullerene supramolecular conjugates as photo-driven DNA cleavage reagents. Chemical Communications, 2015, 51, 12266-12269.	4.1	28
153	Reversing the Cytotoxicity of Bile Acids by Supramolecular Encapsulation. Journal of Medicinal Chemistry, 2017, 60, 3266-3274.	6.4	28
154	Photoreaction-driven two-dimensional periodic polyrotaxane-type supramolecular nanoarchitecture. Chemical Communications, 2019, 55, 8138-8141.	4.1	27
155	Highly efficient photocontrolled targeted delivery of siRNA by a cyclodextrin-based supramolecular nanoassembly. Chemical Communications, 2020, 56, 3907-3910.	4.1	27
156	Luminescent lanthanide–macrocycle supramolecular assembly. Chemical Communications, 2021, 57, 11443-11456.	4.1	27
157	Nanosupramolecular assembly of amphiphilic guest mediated by cucurbituril for doxorubicin delivery. RSC Advances, 2016, 6, 99729-99734.	3.6	26
158	Construction and heterogeneous photooxidization reactivity of a cyclodextrin/porphyrin polyrotaxane network. Organic Chemistry Frontiers, 2019, 6, 10-14.	4.5	26
159	Molecular Binding Behaviors of Pyromellitic and Naphthalene Diimide Derivatives by Tetrasulfonated 1,5-Dinaphtho-(3 <i>n</i> +8)-crown- <i>n</i> (<i>n</i> = 8, 10) in Aqueous Solution. Journal of Organic Chemistry, 2013, 78, 5357-5363.	3.2	25
160	Camptothecin–Polysaccharide Co-assembly and Its Controlled Release. Bioconjugate Chemistry, 2016, 27, 2834-2838.	3.6	25
161	Adsorption of anionic dyes from water by thermostable supramolecular hydrogel. Supramolecular Chemistry, 2016, 28, 817-824.	1.2	25
162	Multivalent Supramolecular Self-Assembly between Î ² -Cyclodextrin Derivatives and Polyoxometalate for Photodegradation of Dyes and Antibiotics. ACS Applied Bio Materials, 2019, 2, 5898-5904.	4.6	25

#	Article	IF	CITATIONS
163	Photocontrolled morphological conversion and chiral transfer of a snowflake-like supramolecular assembly based on azobenzene-bridged bis(dibenzo-24-crown-8) and a cholesterol derivative. Chemical Communications, 2019, 55, 4499-4502.	4.1	25
164	Enzyme-responsive fluorescent camptothecin prodrug/polysaccharide supramolecular assembly for targeted cellular imaging and <i>in situ</i> controlled drug release. Chemical Communications, 2020, 56, 1042-1045.	4.1	25
165	A twin-axial pseudorotaxane for phosphorescence cell imaging. Chemical Communications, 2021, 57, 1214-1217.	4.1	25
166	Ultralarge Stokes Shift Phosphorescence Artificial Harvesting Supramolecular System with Nearâ€Infrared Emission. Advanced Science, 2022, 9, .	11.2	25
167	Nanoarchitectures Constructed from Resulting Polypseudorotaxanes of theβ-Cyclodextrin/4,4'-Dipyridine Inclusion Complex with Co2+and Zn2+Coordination Centers. Chemistry of Materials, 2006, 18, 4423-4429.	6.7	24
168	Supramolecular Assemblies with Nearâ€Infrared Emission Mediated in Two Stages by Cucurbituril and Amphiphilic Calixarene for Lysosomeâ€Targeted Cell Imaging. Angewandte Chemie, 2018, 130, 12699-12703.	2.0	24
169	Photoâ€Controlled Reversible Microtubule Assembly Mediated by Paclitaxelâ€Modified Cyclodextrin. Angewandte Chemie, 2018, 130, 8785-8789.	2.0	24
170	Multivalent Supramolecular Assembly Based on a Triphenylamine Derivative for Near-Infrared Lysosome Targeted Imaging. ACS Applied Materials & amp; Interfaces, 2022, 14, 4417-4422.	8.0	24
171	Stretchable slide-ring supramolecular hydrogel for flexible electronic devices. Communications Materials, 2022, 3, .	6.9	24
172	Molecular Binding Behaviors between Tetrasulfonated Bis(<i>m</i> -phenylene)-26-crown-8 and Bispyridinium Guests in Aqueous Solution. Journal of Physical Chemistry B, 2012, 116, 9500-9506.	2.6	23
173	Supramolecular Assembly of Coronene Derivatives for Drug Delivery. Organic Letters, 2016, 18, 4542-4545.	4.6	23
174	Photo ontrolled Reversible Multicolor Roomâ€Temperature Phosphorescent Solid Supramolecular Pseudopolyrotaxane. Advanced Optical Materials, 2022, 10, .	7.3	23
175	Redox-responsive supramolecular nanoparticles based on amphiphilic sulfonatocalixarene and selenocystamine dihydrochloride. Chinese Chemical Letters, 2015, 26, 862-866.	9.0	22
176	Recycling Gene Carrier with High Efficiency and Low Toxicity Mediated by L-Cystine-Bridged Bis(β-cyclodextrin)s. Scientific Reports, 2014, 4, 7471.	3.3	22
177	Fluorescent supramolecular polypseudorotaxane architectures with Ru(<scp>ii</scp>)/tri(bipyridine) centers as multifunctional DNA reagents. Chemical Communications, 2015, 51, 16127-16130.	4.1	22
178	A supramolecular brush polymer via the self-assembly of bridged tris(β-cyclodextrin) with a porphyrin derivative and its magnetic resonance imaging. Journal of Materials Chemistry B, 2015, 3, 8170-8179.	5.8	22
179	Enzymeâ€Responsive Supramolecular Nanoparticles Based on Carboxylâ€Modified Cyclodextrins for Dual Substrate Loading. Asian Journal of Organic Chemistry, 2018, 7, 870-874.	2.7	22
180	Boronate-crosslinked polysaccharide conjugates for pH-responsive and targeted drug delivery. Chemical Communications, 2019, 55, 1164-1167.	4.1	22

#	Article	IF	CITATIONS
181	Construction and efficient dye adsorption of supramolecular hydrogels by cyclodextrin pseudorotaxane and clay. Soft Matter, 2019, 15, 73-77.	2.7	22
182	A multi-color and white-light emissive cucurbituril/terpyridine/lanthanide supramolecular nanofiber. Chinese Chemical Letters, 2019, 30, 949-952.	9.0	22
183	A Synergistic Enhancement Strategy for Realizing Ultralong and Efficient Roomâ€Temperature Phosphorescence. Angewandte Chemie, 2020, 132, 18907-18913.	2.0	22
184	Actin Cytoskeleton-Disrupting and Magnetic Field-Responsive Multivalent Supramolecular Assemblies for Efficient Cancer Therapy. ACS Applied Materials & Interfaces, 2020, 12, 13709-13717.	8.0	22
185	Cyclodextrin/polyethylenimine-based supramolecular nanoparticles for loading and sustained release of ATP. Chinese Chemical Letters, 2018, 29, 989-991.	9.0	21
186	Enhanced DNA Binding and Photocleavage Abilities of β-Cyclodextrin Appended Ru(II) Complex through Supramolecular Strategy. Bioconjugate Chemistry, 2018, 29, 1829-1833.	3.6	21
187	Amphiphilic multi-charged cyclodextrins and vitamin K co-assembly as a synergistic coagulant. Chemical Communications, 2019, 55, 11790-11793.	4.1	21
188	Magnetic Supramolecular Nanofibers of Gold Nanorods for Photothermal Therapy. Advanced Therapeutics, 2019, 2, 1800137.	3.2	21
189	Pyrrole/macrocycle/MOF supramolecular co-assembly for flexible solid state supercapacitors. Chinese Chemical Letters, 2021, 32, 2773-2776.	9.0	21
190	Light-controlled reversible formation and dissociation of nanorods via interconversion of pseudorotaxanes. Chemical Communications, 2015, 51, 7329-7332.	4.1	20
191	Comparative studies on molecular induced aggregation of hepta-imidazoliumyl-β-cyclodextrin towards anionic surfactants. Chinese Chemical Letters, 2015, 26, 829-833.	9.0	20
192	Polyanionic Cyclodextrin Induced Supramolecular Nanoparticle. Scientific Reports, 2016, 6, 27.	3.3	20
193	Controlled DNA condensation and targeted cellular imaging by ligand exchange in a polysaccharide–quantum dot conjugate. Chemical Communications, 2016, 52, 6087-6090.	4.1	20
194	Construction and drug delivery of a fluorescent TPE-bridged cyclodextrin/hyaluronic acid supramolecular assembly. RSC Advances, 2016, 6, 50673-50679.	3.6	20
195	Tunable photo-luminescence behaviors of macrocycle-containing polymer networks in the solid-state. Chemical Communications, 2018, 54, 6068-6071.	4.1	20
196	A General Supramolecular Approach to Regulate Protein Functions by Cucurbit[7]uril and Unnatural Amino Acid Recognition. Angewandte Chemie - International Edition, 2021, 60, 11196-11200.	13.8	20
197	Construction and Luminescent Behavior of Supramolecular Hydrogel with White-Light Emission. Acta Chimica Sinica, 2018, 76, 622.	1.4	20
198	A Luminescent β-Cyclodextrin-Based Ru(phen)3 Complex as DNA Compactor, Enzyme Inhibitor, and Translocation Tracer. ACS Nano, 2007, 1, 313-318.	14.6	19

#	Article	IF	CITATIONS
199	Manipulating γ-cyclodextrin-mediated photocyclodimerization of anthracenecarboxylate by wavelength, temperature, solvent and host. Photochemical and Photobiological Sciences, 2014, 13, 190-198.	2.9	19
200	Photocontrolled Coumarin-diphenylalanine/Cyclodextrin Cross-Linking of 1D Nanofibers to 2D Thin Films. ACS Applied Materials & Interfaces, 2018, 10, 6810-6814.	8.0	19
201	Two-Dimensional Supramolecular Nanoarchitectures of Polypseudorotaxanes Based on Cucurbit[8]uril for Highly Efficient Electrochemical Nitrogen Reduction. Chemistry of Materials, 2020, 32, 8724-8732.	6.7	19
202	Controllable Photoluminescence Behaviors of Amphiphilic Porphyrin Supramolecular Assembly Mediated by Cyclodextrins. Advanced Optical Materials, 2017, 5, 1700770.	7.3	18
203	Multicharge β-cyclodextrin supramolecular assembly for ATP capture and drug release. Chemical Communications, 2021, 57, 2812-2815.	4.1	18
204	Supramolecular Nanoassemblies of an Amphiphilic Porphyrin–Cyclodextrin Conjugate and Their Morphological Transition from Vesicle to Network. Chemistry - A European Journal, 2015, 21, 4457-4464.	3.3	17
205	Construction, Enzyme Response, and Substrate Capacity of a Hyaluronan–Cyclodextrin Supramolecular Assembly. Chemistry - an Asian Journal, 2016, 11, 505-511.	3.3	17
206	Superbenzene-bridged bis(permethyl-β-cyclodextrin) as a convenient and effective probe for trinitrophenol exploder. Journal of Materials Chemistry C, 2017, 5, 799-802.	5.5	17
207	Efficient energy transfer between coronene-modified permethyl-β-cyclodextrins and porphyrin for light induced DNA cleavage. Chemical Communications, 2017, 53, 3717-3720.	4.1	17
208	Photocontrolled reversible conversion of a lamellar supramolecular assembly based on cucurbiturils and a naphthalenediimide derivative. Chemical Communications, 2018, 54, 13591-13594.	4.1	17
209	Cyclodextrin-Based Supramolecular Hydrogel as a Selective Chiral Adsorption/Separation Platform for Tryptophan Enantiomers. ACS Applied Polymer Materials, 2020, 2, 5641-5645.	4.4	17
210	Quaternary Supramolecular Nanoparticles as a Photoerasable Luminescent Ink and Photocontrolled Cellâ€Imaging Agent. Advanced Optical Materials, 2020, 8, 2000220.	7.3	17
211	Mitochondrion-targeting chemiluminescent ternary supramolecular assembly for in situ photodynamic therapy. Chemical Communications, 2020, 56, 8857-8860.	4.1	17
212	A tunable phosphorescence supramolecular switch by an anthracene photoreaction in aqueous solution. Journal of Materials Chemistry C, 2022, 10, 2623-2630.	5.5	17
213	Cyclodextrin onfined Supramolecular Lanthanide Photoswitch. Small, 2022, 18, e2201737.	10.0	17
214	Supramolecular FRET photocyclodimerization of anthracenecarboxylate with naphthalene-capped Î ³ -cyclodextrin. Beilstein Journal of Organic Chemistry, 2011, 7, 290-297.	2.2	16
215	Tunable Nanosupramolecular Aggregates Mediated by Host–Guest Complexation. Angewandte Chemie, 2016, 128, 11624-11628.	2.0	16
216	Supramolecular Assembly of Thiolated Cyclodextrin and Ferrocene Derivative for Controlled Drug Delivery. ChemNanoMat, 2018, 4, 758-763.	2.8	16

#	Article	IF	CITATIONS
217	Photo-controlled chirality transfer and FRET effects based on pseudo[3]rotaxane. Chemical Communications, 2019, 55, 13462-13465.	4.1	16
218	Alternating Magnetic Field Controlled Targeted Drug Delivery Based on Graphene Oxideâ€Grafted Nanosupramolecules. Chemistry - A European Journal, 2020, 26, 13698-13703.	3.3	16
219	Alkyl-Substituted Cucurbit[6]uril Bridged β-Cyclodextrin Dimer Mediated Intramolecular FRET Behavior. Journal of Organic Chemistry, 2020, 85, 6131-6136.	3.2	16
220	Nearâ€Infrared Phosphorescent Switch of Diarylethene Phenylpyridinium Derivative and Cucurbit[8]uril for Cell Imaging. Small, 2022, 18, e2201821.	10.0	16
221	Synthesis and Photophysical Behavior of a Supramolecular Nanowire made from Dithienyletheneâ€Bridged Bis(permethylâ€ <i>β</i> yclodextrin)s and Porphyrins. Chemistry - an Asian Journal, 2015, 10, 84-90.	3.3	15
222	Size Switchable Supramolecular Nanoparticle Based on Azobenzene Derivative within Anionic Pillar[5]arene. Scientific Reports, 2016, 6, 37014.	3.3	15
223	Tunable Supramolecular Assembly and Photoswitchable Conversion of Cyclodextrin/Diphenylalanineâ€Based 1D and 2D Nanostructures. Angewandte Chemie, 2017, 129, 7168-7171.	2.0	15
224	Multi-charged bis(<i>p</i> -calixarene)/pillararene functionalized gold nanoparticles for ultra-sensitive sensing of butyrylcholinesterase. Soft Matter, 2019, 15, 8197-8200.	2.7	15
225	Supramolecular Crosslinked Polymer for Efficient Organic Dye Removal from Aqueous Solution. Advanced Sustainable Systems, 2019, 3, 1800165.	5.3	15
226	Molecular binding behavior of a bispyridinium-containing bis(β-cyclodextrin) and its corresponding [2]rotaxane towards bile salts. Organic and Biomolecular Chemistry, 2014, 12, 2559.	2.8	14
227	Bridged bis(β-cyclodextrin)s-based polysaccharide nanoparticles for controlled paclitaxel delivery. RSC Advances, 2016, 6, 28593-28598.	3.6	14
228	Photo-induced secondary assembly of bis(terpyridyl)dibenzo-24-crown-8/Zn2+ supramolecular polymer. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 331, 240-246.	3.9	14
229	Fluorescence Sensing of Glutathione Thiyl Radical by <scp>BODIPYâ€Modified β yclodextrin</scp> . Chinese Journal of Chemistry, 2022, 40, 493-499.	4.9	14
230	Photocleavable Supramolecular Polysaccharide Nanoparticles for Targeted Drug Release in Cancer Cells. Asian Journal of Organic Chemistry, 2018, 7, 2444-2447.	2.7	13
231	Cucurbit[8]uril-Mediated Polypseudorotaxane for Enhanced Lanthanide Luminescence Behavior in Water. Organic Letters, 2019, 21, 9363-9367.	4.6	13
232	Ultrahigh Supramolecular Cascaded Roomâ€Temperature Phosphorescence Capturing System. Angewandte Chemie, 2021, 133, 27377-27383.	2.0	13
233	Simultaneous expression and transportation of insulin by supramolecular polysaccharide nanocluster. Scientific Reports, 2016, 6, 22654.	3.3	12
234	Supramolecular hydrogel with tunable multi-color and white-light fluorescence from sulfato-β-cyclodextrin and aminoclay. Soft Matter, 2019, 15, 3493-3496.	2.7	12

#	Article	IF	CITATIONS
235	Cucurbit[7]uril-Mediated 2D Single-Layer Hybrid Frameworks Assembled by Tetraphenylethene and Polyoxometalate toward Modulation of the α-Chymotrypsin Activity. ACS Applied Materials & Interfaces, 2020, 12, 15615-15621.	8.0	12
236	A contorted nanographene shelter. Nature Communications, 2021, 12, 5191.	12.8	12
237	Cyclodextrin-Activated Porphyrin Photosensitization for Boosting Self-Cleavable Drug Release. Journal of Medicinal Chemistry, 2022, 65, 6764-6774.	6.4	12
238	Cyclodextrin-based switchable DNA condenser. Chemical Communications, 2015, 51, 10839-10842.	4.1	11
239	Photochemically driven luminescence switch of metal supramolecular assembly incorporating mixed lanthanides and photochromic guest molecule. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 242-248.	3.9	11
240	Drug Displacement Strategy for Treatment of Acute Liver Injury with Cyclodextrin-Liposome Nanoassembly. IScience, 2019, 15, 223-233.	4.1	11
241	Electrospinning Oriented Selfâ€Cleaning Porous Crosslinking Polymer for Efficient Dyes Removal. Advanced Materials Interfaces, 2020, 7, 2001050.	3.7	11
242	A Supramolecular Strategy for Enhancing Photochirogenic Performance through Host/Guest Modification: Dicationic l ³ -Cyclodextrin-Mediated Photocyclodimerization of 2,6-Anthracenedicarboxylate. Organic Letters, 2020, 22, 9757-9761.	4.6	11
243	Polysaccharide-Based Nanoparticles for Two-Step Responsive Release of Antitumor Drug. ACS Medicinal Chemistry Letters, 2020, 11, 1191-1195.	2.8	11
244	Lanthanide Luminescent Supramolecular Assembly Based on Cyclodextrin. Acta Chimica Sinica, 2020, 78, 1164.	1.4	11
245	Highly effective gene delivery based on cyclodextrin multivalent assembly in target cancer cells. Journal of Materials Chemistry B, 2022, 10, 958-965.	5.8	11
246	Dual-responsive drug release and fluorescence imaging based on disulfide-pillar[4]arene aggregate in cancer cells. Bioorganic and Medicinal Chemistry, 2022, 57, 116649.	3.0	11
247	Photodimerization-induced transition of helixes to vesicles based on coumarin-12-crown-4. Chinese Chemical Letters, 2022, 33, 4033-4036.	9.0	11
248	Inclusion-Activated Reversible <i>E</i> / <i>Z</i> Isomerization of a Cyanostilbene Derivative Based on Cucurbit[8]uril under 365 nm Ultraviolet Irradiation. Journal of Organic Chemistry, 2022, 87, 7658-7664.	3.2	10
249	Macrocyclic Confined Purely Organic Roomâ€Temperature Phosphorescence Threeâ€Photon Targeted Imaging. Advanced Optical Materials, 2022, 10, .	7.3	10
250	Cucurbit[8]uril Confined 6â€Bromoisoquinoline Derivative Dicationic Phosphorescent Energy Transfer Supramolecular Switch for Lysosome Targeted Imaging. Advanced Optical Materials, 2022, 10, .	7.3	10
251	Chiral Binaphthylbis(4,4′â€Bipyridinâ€1″um)/Cucurbit[8]Uril Supramolecular System and Its Induced Circularly Polarized Luminescence. Macromolecular Rapid Communications, 2018, 39, e1700869.	3.9	9
252	Multicolor luminescent supramolecular hydrogels based on cucurbit[8]uril and OPV derivative. Soft Matter, 2019, 15, 9881-9885.	2.7	9

#	Article	IF	CITATIONS
253	Supramolecular Hyaluronic Assembly with Aggregation-Induced Emission Mediated in Two Stages for Targeting Cell Imaging. ACS Medicinal Chemistry Letters, 2020, 11, 451-456.	2.8	9
254	Supramolecular Assembly of Î ² -Cyclodextrin-Modified Polymer by Electrospinning with Sustained Antibacterial Activity. Biomacromolecules, 2021, 22, 4434-4445.	5.4	9
255	Tunable Second‣evel Roomâ€Temperature Phosphorescence of Solid Supramolecules between Acrylamide–Phenylpyridium Copolymers and Cucurbit[7]uril. Angewandte Chemie, 2022, 134, .	2.0	9
256	<i>In Situ</i> Coassembly Induced Mitochondrial Aggregation Activated Drug-Resistant Tumor Treatment. Journal of Medicinal Chemistry, 2022, 65, 7363-7370.	6.4	9
257	Construction and DNA Condensation of Cyclodextrin oated Gold Nanoparticles with Anthryl Grafts. Chemistry - an Asian Journal, 2014, 9, 1895-1903.	3.3	8
258	Multiple‣timuli Responsive and Tunable Luminescent Supramolecular Assembly by Oligo(<i>p</i> â€phenylvinylene) and Surfactant. Chinese Journal of Chemistry, 2018, 36, 526-530.	4.9	8
259	Synergistic activation of photoswitchable supramolecular assembly based on sulfonated crown ether and dithienylethene derivative. Chinese Chemical Letters, 2022, 33, 2447-2450.	9.0	8
260	Dualâ€Stimulus Supramolecular Luminescent Switch Based on Cyanostilbeneâ€Bridged Bis(Dibenzoâ€24â€Crownâ€8) and a Diarylethene Derivative. Advanced Optical Materials, 2022, 10, .	7.3	8
261	Guest-induced supramolecular chirality transfer in [2]pseudorotaxanes: experimental and computational study. Organic and Biomolecular Chemistry, 2020, 18, 7649-7655.	2.8	7
262	Reply to Comment on "Photo ontrolled Reversible Microtubule Assembly Mediated by Paclitaxelâ€Modified Cyclodextrin― Angewandte Chemie - International Edition, 2020, 59, 7655-7656.	13.8	7
263	Cyclodextrin rossâ€Linked Hydrogels for Adsorption and Photodegradation of Cationic Dyes in Aqueous Solution. Chemistry - an Asian Journal, 2021, 16, 2321-2327.	3.3	7
264	Supramolecular Assemblies of Multi-Charged Cyclodextrins. Chinese Journal of Organic Chemistry, 2020, 40, 3802.	1.3	7
265	Syntheses of dibenzo-18-crown-6 lariat isomers and their complexation with lanthanoid nitrates. Supramolecular Chemistry, 2008, 20, 731-736.	1.2	6
266	Sequestration of pyridinium herbicides in plants by carboxylated pillararenes possessing different alkyl chains. RSC Advances, 2020, 10, 35136-35140.	3.6	6
267	Polarization of Stem Cells Directed by Magnetic Field-Manipulated Supramolecular Polymeric Nanofibers. ACS Applied Materials & Interfaces, 2021, 13, 9580-9588.	8.0	6
268	Multi-charged macrocycles as a platform for rapid and broad spectral photodecomposition of aromatic dyes. Chemical Communications, 2020, 56, 7187-7190.	4.1	6
269	Construction of Cyclodextrin/Aminoclay-Based Supramolecular Hydrogel and Its I ₃ ⁻ /I ₂ Adsorption Property. Chinese Journal of Organic Chemistry, 2019, 39, 151.	1.3	6
270	Multicharged Supramolecular Assembly Mediated by Polycationic Cyclodextrin for Efficiently Photodynamic Antibacteria. ACS Applied Bio Materials, 2021, 4, 8536-8542.	4.6	6

JIANG-HUA LIU

#	Article	IF	CITATIONS
271	Conformationally Confined Emissive Cationic Macrocycle with Photocontrolled Organelleâ€6pecific Translocation. Advanced Science, 2022, 9, .	11.2	6
272	Targeted Polypeptide–Microtubule Aggregation with Cucurbit[8]uril for Enhanced Cell Apoptosis. Angewandte Chemie, 2019, 131, 10663-10667.	2.0	5
273	Organic Twoâ€Dimensional Assembly with Rectification Property Mediated by Cucurbit[8]uril. ChemNanoMat, 2019, 5, 407-410.	2.8	5
274	Photoâ€Controllable Catalysis and Chiral Monosaccharide Recognition Induced by Cyclodextrin Derivatives. Angewandte Chemie, 2021, 133, 7732-7736.	2.0	5
275	Supramolecular Assembly Based on Sulfato-β-cyclodextrin for Hypoxia Cell Imaging. ACS Applied Polymer Materials, 2022, 4, 2935-2940.	4.4	5
276	Lanthanide Luminescence Supramolecular Switch Based on Photoreactive Ammonium Molybdate. ACS Applied Materials & Interfaces, 2021, 13, 59126-59131.	8.0	5
277	An Efficient Aggregationâ€Induced Emission Supramolecular Probe for Detection of Nitroaromatic Explosives in Water. Advanced Photonics Research, 2020, 1, 2000007.	3.6	4
278	Butyrylcholinesterase responsive supramolecular prodrug with targeted nearâ€infrared cellular imaging property. Asian Journal of Organic Chemistry, 0, , .	2.7	4
279	Tunable Supramolecular Nanoarchitectures Constructed by the Complexation of Diphenanthroâ€24 rownâ€8/Cesium(I) with Nickel(II) and Silver(I) Ions. ChemPlusChem, 2019, 84, 161-165.	2.8	3
280	Construction and Humidity Response of a Roomâ€Temperatureâ€Phosphorescent Hybrid Xerogel Based on a Multicharge Supramolecular Assembly. Advanced Photonics Research, 2021, 2, 2000080.	3.6	3
281	Induced Nearâ€Infrared Emission and Controlled Photooxidation based on Sulfonated Crown Ether in Water. Chemistry - A European Journal, 2022, 28, .	3.3	3
282	Biaxial pseudorotaxane secondary assembly for phosphorescent cellular imaging. Materials Advances, 2022, 3, 4693-4698.	5.4	3
283	Cucurbiturils-Based Pseudorotaxanes and Rotaxanes. , 2019, , 1-28.		1
284	Cucurbiturils-Based Pseudorotaxanes and Rotaxanes. , 2020, , 759-786.		1
285	Supramolecular Assembly Constructed from Multi-charged Cyclodextrin-Induced Aggregation. , 2019, , 1-14.		0
286	Application of Macrocycle-Based Supramolecular Assemblies Based on Aggregation-Induced Emission. , 2019, , 1-24.		0
287	Construction and Application of Lanthanide Luminescent Materials Based on Macrocycles. , 2019, , 1-24.		0
288	Supramolecular 2D Nanostructures Mediated by Macrocyclic Host: Cyclodextrin, Cucurbituril, and Pillararene. , 2019, , 1-18.		0

JIANG-HUA LIU

#	Article	IF	CITATIONS
289	Photolysis Behaviors of Anthryl Derivative Aggregation Mediated by Sulfatoâ€Î²â€Cyclodextrin. ChemistrySelect, 2019, 4, 13241-13244.	1.5	0
290	Cyclodextrin-Based Supramolecular Hydrogel. , 2019, , 1-26.		0
291	Reply to Comment on "Photoâ€Controlled Reversible Microtubule Assembly Mediated by Paclitaxelâ€Modified Cyclodextrin― Angewandte Chemie, 2020, 132, 7727-7728.	2.0	0
292	A General Supramolecular Approach to Regulate Protein Functions by Cucurbit[7]uril and Unnatural Amino Acid Recognition. Angewandte Chemie, 2021, 133, 11296-11300.	2.0	0
293	Nanoscaled Cyclodextrin Supermolecular System for Drug and Gene Delivery. , 2019, , 1-19.		0
294	Spectroscopy Studies of Macrocyclic Supramolecular Assembly. , 2019, , 1-34.		0
295	Fabrication and Application of Cyclodextrin-Porphyrin Supramolecular System. , 2019, , 1-32.		0
296	Construction and Applications of Cyclodextrin Polymers in Biology. , 2019, , 1-23.		0
297	Fabrications and Applications of Cucurbit[8]uril-Based Supramolecular Polymer. , 2019, , 1-40.		0
298	Photoluminescent Crown Ether Assembly. , 2019, , 1-30.		0
299	Construction and Applications of Cyclodextrin Polymers in Biology. , 2020, , 537-558.		0
300	Fabrication and Application of Cyclodextrin-Porphyrin Supramolecular System. , 2020, , 1073-1104.		0
301	Supramolecular 2D Nanostructures Mediated by Macrocyclic Host: Cyclodextrin, Cucurbituril, and Pillararene. , 2020, , 1393-1410.		0
302	Fabrications and Applications of Cucurbit[8]uril-Based Supramolecular Polymer. , 2020, , 787-826.		0
303	Construction and Application of Lanthanide Luminescent Materials Based on Macrocycles. , 2020, , 1369-1391.		0
304	Nanoscaled Cyclodextrin Supermolecular System for Drug and Gene Delivery. , 2020, , 1635-1653.		0
305	Supramolecular Assembly Constructed from Multi-charged Cyclodextrin-Induced Aggregation. , 2020, , 573-586.		0
306	Cyclodextrin-Based Supramolecular Hydrogel. , 2020, , 483-508.		0

JIANG-HUA	L II I
	LIU

#	Article	IF	CITATIONS
307	Construction and Biomedical Application of Magnetic Supramolecular Assemblies. , 2020, , 559-571.		Ο
308	Spectroscopy Studies of Macrocyclic Supramolecular Assembly. , 2020, , 1161-1193.		0
309	Photoluminescent Crown Ether Assembly. , 2020, , 107-136.		0
310	Application of Macrocycle-Based Supramolecular Assemblies Based on Aggregation-Induced Emission. , 2020, , 1345-1368.		0