
Xiaofei Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1783684/publications.pdf Version: 2024-02-01

XIAOFEI LIANC

Х

#	Article	IF	CITATIONS
1	Species-Specific and Inhibitor-Dependent Conformations of LpxC: Implications for Antibiotic Design. Chemistry and Biology, 2011, 18, 38-47.	6.0	110
2	Syntheses, structures and antibiotic activities of LpxC inhibitors based on the diacetylene scaffold. Bioorganic and Medicinal Chemistry, 2011, 19, 852-860.	3.0	81
3	Synthesis, Structure, and Antibiotic Activity of Aryl-Substituted LpxC Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 6954-6966.	6.4	67
4	Storage of Hydrogen Spin Polarization in Long-Lived ¹³ C ₂ Singlet Order and Implications for Hyperpolarized Magnetic Resonance Imaging. Journal of the American Chemical Society, 2013, 135, 9632-9635.	13.7	65
5	Lipid A Has Significance for Optimal Growth of Coxiella burnetii in Macrophage-Like THP-1 Cells and to a Lesser Extent in Axenic Media and Non-phagocytic Cells. Frontiers in Cellular and Infection Microbiology, 2018, 8, 192.	3.9	51
6	Drug design from the cryptic inhibitor envelope. Nature Communications, 2016, 7, 10638.	12.8	50
7	Lipooligosaccharide is required for the generation of infectious elementary bodies in <i>Chlamydia trachomatis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10284-10289.	7.1	42
8	Structural Basis of the Promiscuous Inhibitor Susceptibility of <i>Escherichia coli</i> LpxC. ACS Chemical Biology, 2014, 9, 237-246.	3.4	29
9	High susceptibility of MDR and XDR Gram-negative pathogens to biphenyl-diacetylene-based difluoromethyl- <i>allo</i> -threonyl-hydroxamate LpxC inhibitors. Journal of Antimicrobial Chemotherapy, 2016, 71, 2874-2882.	3.0	25
10	Ammonia Induces Autophagy through Dopamine Receptor D3 and MTOR. PLoS ONE, 2016, 11, e0153526.	2.5	24
11	Curative Treatment of Severe Gram-Negative Bacterial Infections by a New Class of Antibiotics Targeting LpxC. MBio, 2017, 8, .	4.1	24
12	Nanocrystal-loaded liposome for targeted delivery of poorly water-soluble antitumor drugs with high drug loading and stability towards efficient cancer therapy. International Journal of Pharmaceutics, 2021, 599, 120418.	5.2	23
13	Discovery of <i>N</i> -(4-(6-Acetamidopyrimidin-4-yloxy)phenyl)-2-(2-(trifluoromethyl)phenyl)acetamide (CHMFL-FLT3-335) as a Potent FMS-like Tyrosine Kinase 3 Internal Tandem Duplication (FLT3-ITD) Mutant Selective Inhibitor for Acute Myeloid Leukemia. Journal of Medicinal Chemistry, 2019, 62, 875-892.	6.4	20
14	Simultaneous inhibition of Vps34 kinase would enhance PI3KÎ [^] inhibitor cytotoxicity in the B-cell malignancies. Oncotarget, 2016, 7, 53515-53525.	1.8	19
15	Discovery of 2-((3-Amino-4-methylphenyl)amino)- <i>N</i> -(2-methyl-5-(3-(trifluoromethyl)benzamido)phenyl)-4-(methylamino) (CHMFL-ABL-053) as a Potent, Selective, and Orally Available BCR-ABL/SRC/p38 Kinase Inhibitor for Chronic Mveloid Leukemia. Journal of Medicinal Chemistry. 2016. 59. 1984-2004.)pyrimidin 8.4	e-5 <u>-</u> carboxa 17
16	Discovery of 2-((3-Acrylamido-4-methylphenyl)amino)- <i>N</i> .(2-methyl-5-(3,4,5-trimethoxybenzamido)phenyl)-4-(methylamin (CHMFL-BMX-078) as a Highly Potent and Selective Type II Irreversible Bone Marrow Kinase in the X Chromosome (BMX) Kinase Inhibitor. Journal of Medicinal Chemistry, 2017, 60, 1793-1816.	no)pyrimio	dine-5-carbo
17	A Scalable Synthesis of the Difluoromethyl- <i>allo</i> -threonyl Hydroxamate-Based LpxC Inhibitor LPC-058. Journal of Organic Chemistry, 2016, 81, 4393-4398.	3.2	14
18	Discovery of 6′-chloro-N-methyl-5'-(phenylsulfonamido)-[3,3′-bipyridine]-5-carboxamide (CHMFL-PI4K-12 as a novel Plasmodium falciparum PI(4)K inhibitor with potent antimalarial activity against both blood and liver stages of Plasmodium. European Journal of Medicinal Chemistry, 2020, 188, 112012.	27) 5.5	13

#	Article	IF	CITATIONS
19	Discovery of (<i>S</i>)-2-(1-(4-Amino-3-(3-fluoro-4-methoxyphenyl)-1 <i>H</i> -pyrazolo[3,4- <i>d</i>]pyrimidin-1-yl)propyl)-3-cy (IHMT-PI3Kδ-372) as a Potent and Selective PI3Kδ Inhibitor for the Treatment of Chronic Obstructive Pulmonary Disease. Journal of Medicinal Chemistry, 2020, 63, 13973-13993.	vclopropyl 6.4	-5 _{-f} luoroqui
20	Discovery of IHMT-EZH2-115 as a Potent and Selective Enhancer of Zeste Homolog 2 (EZH2) Inhibitor for the Treatment of B-Cell Lymphomas. Journal of Medicinal Chemistry, 2021, 64, 15170-15188.	6.4	12
21	Discovery of (S)-2-amino-N-(5-(6-chloro-5-(3-methylphenylsulfonamido)pyridin-3-yl)-4-methylthiazol-2-yl)-3-methylbutanamide (CHMFL-PI3KD-317) as a potent and selective phosphoinositide 3-kinase delta (PI3KÎ) inhibitor. European lournal of Medicinal Chemistry. 2018. 156. 831-846.	5.5	8
22	Characterization of selective and potent PI3Kδ inhibitor (PI3KD-IN-015) for B-Cell malignances. Oncotarget, 2016, 7, 32641-32651.	1.8	7
23	Adaptive Responses of <i>Pseudomonas aeruginosa</i> to Treatment with Antibiotics. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0087821.	3.2	7
24	Degradation of Components of the Lpt Transenvelope Machinery Reveals LPS-Dependent Lpt Complex Stability in Escherichia coli. Frontiers in Molecular Biosciences, 2021, 8, 758228.	3.5	6
25	An ultra-long circulating nanoparticle for reviving a highly selective BCR-ABL inhibitor in long-term effective and safe treatment of chronic myeloid leukemia. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 29, 102283	3.3	1