Lu Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1783602/publications.pdf

Version: 2024-02-01

87	3,146	31 h-index	53
papers	citations		g-index
90	90	90	2884
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Crystalline structure and reinforcement in hybrid PP composites. Journal of Thermal Analysis and Calorimetry, 2022, 147, 145-154.	3.6	6
2	Pomegranate extract for the processing stabilization of polyethylene. Journal of Vinyl and Additive Technology, 2022, 28, 321-330.	3.4	7
3	Impact modification of hybrid polypropylene composites with poly(vinyl alcohol) fibers. Journal of Reinforced Plastics and Composites, 2022, 41, 399-410.	3.1	1
4	Improved Release of a Drug with Poor Water Solubility by Using Electrospun Water-Soluble Polymers as Carriers. Pharmaceutics, 2022, 14, 34.	4.5	14
5	Quantitative analysis of factors determining the enzymatic degradation of poly(lactic acid). International Journal of Biological Macromolecules, 2022, 209, 1703-1709.	7.5	10
6	Melt stabilization of polyethylene with natural antioxidants: comparison of a natural extract and its main component. Journal of Thermal Analysis and Calorimetry, 2021, 145, 67-75.	3.6	7
7	The role of ionic clusters in the determination of the properties of partially neutralized ethylene-acrylic acid ionomers. European Polymer Journal, 2021, 142, 110110.	5.4	14
8	Effect of various organic fibers on the stiffness, strength and impact resistance of polypropylene; a comparison. Polymer International, 2021, 70, 145-153.	3.1	14
9	Impact modification of fiber reinforced polypropylene composites with flexible poly(ethylene) Tj ETQq $1\ 1\ 0.784$	314 _{3.} gBT /	Ovgrlock 10 T
10	Biobased PLA/sugarcane bagasse fiber composites: Effect of fiber characteristics and interfacial adhesion on properties. Composites Part A: Applied Science and Manufacturing, 2021, 143, 106273.	7.6	38
11	Improvement of the impact resistance of natural fiber–reinforced polypropylene composites through hybridization. Polymers for Advanced Technologies, 2021, 32, 2499-2507.	3.2	14
12	Rheology of PLA/regenerated cellulose nanocomposites prepared by the pickering emulsion process: Network formation and modeling. Materials and Design, 2021, 206, 109774.	7.0	13
13	Ring-opening polymerization of $\hat{l}\mu$ -caprolactone from cellulose acetate by reactive processing. Cellulose, 2021, 28, 9103-9116.	4.9	5
14	Entrapment of Phenylalanine Ammonia-Lyase in Nanofibrous Polylactic Acid Matrices by Emulsion Electrospinning. Catalysts, 2021, 11, 1149.	3.5	6
15	Physical–Chemical Aspects of the Preparation and Drug Release of Electrospun Scaffolds. Pharmaceutics, 2021, 13, 1645.	4.5	4
16	Poly-Îμ-Caprolactone/Halloysite Nanotube Composites for Resorbable Scaffolds: Effect of Processing Technology on Homogeneity and Electrospinning. Polymers, 2021, 13, 3772.	4.5	0
17	Controlled degradation of poly-ε-caprolactone for resorbable scaffolds. Colloids and Surfaces B: Biointerfaces, 2020, 186, 110678.	5.0	14
18	Physical ageing of Poly(Lactic acid): Factors and consequences for practice. Polymer, 2020, 186, 122014.	3.8	32

#	Article	IF	Citations
19	Coupling of PMMA to the surface of a layered silicate by intercalative polymerization: processes, structure and properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601, 124979.	4.7	7
20	Quantitative determination of release kinetics from fibrous poly(3-hydroxybutyrate) scaffolds. Materials Science and Engineering C, 2020, 114, 111026.	7.3	3
21	Reinforcement of PP with polymer fibers: Effect of matrix characteristics, fiber type and interfacial adhesion. Polymer, 2020, 190, 122203.	3.8	17
22	<p>Electrospun PLA Fibers Containing Metronidazole for Periodontal Disease</p> . Drug Design, Development and Therapy, 2020, Volume 14, 233-242.	4.3	18
23	Poly(lactic acid)/cellulose nanocrystal composites via the Pickering emulsion approach: Rheological, thermal and mechanical properties. International Journal of Biological Macromolecules, 2019, 137, 197-204.	7.5	63
24	Enzymatic degradation of PLA/cellulose nanocrystal composites. Industrial Crops and Products, 2019, 141, 111799.	5.2	62
25	Deformation and failure of sugarcane bagasse reinforced PP. European Polymer Journal, 2019, 112, 153-160.	5.4	34
26	The role of enzyme adsorption in the enzymatic degradation of an aliphatic polyester. Enzyme and Microbial Technology, 2019, 120, 110-116.	3.2	8
27	Impact modification of PP/wood composites: A new approach using hybrid fibers. EXPRESS Polymer Letters, 2019, 13, 223-234.	2.1	31
28	Separation and kinetic analysis of the thermo-oxidative reactions of polyacrylonitrile upon heat treatment. Journal of Thermal Analysis and Calorimetry, 2018, 133, 1371-1378.	3.6	7
29	Melt stabilization of PE with natural antioxidants: Comparison of rutin and quercetin. European Polymer Journal, 2018, 103, 228-237.	5.4	21
30	Hips/zeolite hybrid composites as active packaging materials: Structure and functional properties. European Polymer Journal, 2018, 103, 88-94.	5.4	8
31	Enzymatic degradation of poly-[(R)-3-hydroxybutyrate]: Mechanism, kinetics, consequences. International Journal of Biological Macromolecules, 2018, 112, 156-162.	7.5	22
32	Hydrogen bonding interactions in poly(ethylene-co-vinyl alcohol)/lignin blends. International Journal of Biological Macromolecules, 2018, 107, 1203-1211.	7.5	26
33	Correlations among Miscibility, Structure, and Properties in Thermoplastic Polymer/Lignin Blends. ACS Sustainable Chemistry and Engineering, 2018, 6, 14323-14331.	6.7	38
34	The novel technique of vapor pressure analysis to monitor the enzymatic degradation of PHB by HPLC chromatography. Analytical Biochemistry, 2017, 521, 20-27.	2.4	5
35	Determination of the specific surface area of layered silicates by methylene blue adsorption: The role of structure, pH and layer charge. Applied Clay Science, 2017, 146, 50-55.	5.2	64
36	Natural antioxidants as melt stabilizers for PE: Comparison of silymarin and quercetin. European Polymer Journal, 2017, 90, 456-466.	5.4	16

#	Article	IF	CITATIONS
37	Coupling of poly(lactic acid) with a polyurethane elastomer by reactive processing. European Polymer Journal, 2017, 97, 409-417.	5.4	15
38	Competitive interactions, structure and properties in polymer/layered silicate nanocomposites. EXPRESS Polymer Letters, 2017, 11, 479-492.	2.1	20
39	Adsorption of an active molecule on the surface of halloysite for controlled release application: Interaction, orientation, consequences. Applied Clay Science, 2016, 132-133, 167-174.	5.2	13
40	Improvement of the impact strength of ethyleneâ€propylene random copolymers by nucleation. Journal of Applied Polymer Science, 2016, 133, .	2.6	16
41	Fracture resistance of hybrid PP/elastomer/wood composites. Composite Structures, 2016, 141, 146-154.	5.8	40
42	Competitive interactions and controlled release of a natural antioxidant from halloysite nanotubes. Journal of Colloid and Interface Science, 2016, 462, 123-129.	9.4	10
43	Physical ageing and molecular mobility in PLA blends and composites. Journal of Thermal Analysis and Calorimetry, 2015, 122, 1423-1433.	3.6	35
44	Efficiency of curcumin, a natural antioxidant, in the processing stabilization of PE: Concentration effects. Polymer Degradation and Stability, 2015, 118, 17-23.	5.8	28
45	Effect of desiccant characteristics on the properties of PS/zeolite functional packaging materials. Polymer Composites, 2014, 35, 2112-2120.	4.6	12
46	Study of the effect of natural antioxidants in polyethylene: Performance of \hat{l}^2 -carotene. Polymer Degradation and Stability, 2014, 102, 33-40.	5.8	39
47	Efficient melt stabilization of polyethylene with quercetin, a flavonoid type natural antioxidant. Polymer Degradation and Stability, 2014, 102, 41-48.	5.8	61
48	PLA/lignocellulosic fiber composites: Particle characteristics, interfacial adhesion, and failure mechanism. Journal of Applied Polymer Science, 2014, 131, .	2.6	52
49	Wood fiber reinforced multicomponent, multiphase PP composites: Structure, properties, failure mechanism. Composites Science and Technology, 2014, 103, 106-112.	7.8	22
50	Chain regularity of isotactic polypropylene determined by different thermal fractionation methods. Journal of Thermal Analysis and Calorimetry, 2014, 118, 235-245.	3.6	17
51	The role of solubility and critical temperatures for the efficiency of sorbitol clarifiers in polypropylene. RSC Advances, 2014, 4, 19737-19745.	3.6	31
52	Thermoplastic starch/wood composites: Interfacial interactions and functional properties. Carbohydrate Polymers, 2014, 102, 821-829.	10.2	46
53	Functional packaging materials: factors affecting the capacity and rate of water adsorption in desiccant composites. Journal of Polymer Research, 2013, 20, 1.	2.4	17
54	Effect of molecular architecture on the crystalline structure and stiffness of iPP homopolymers: Modeling based on annealing experiments. Journal of Applied Polymer Science, 2013, 130, 3365-3373.	2.6	28

#	Article	IF	CITATIONS
55	Effect of Clay Modification on the Mechanism of Local Deformations in PA6 Nanocomposites. Macromolecular Materials and Engineering, 2013, 298, 796-805.	3.6	3
56	Tensile and impact properties of three-component PP/wood/elastomer composites. EXPRESS Polymer Letters, 2012, 6, 224-236.	2.1	56
57	Adhesion and micromechanical deformation processes in PLA/CaSO4 composites. Carbohydrate Polymers, 2012, 89, 759-767.	10.2	28
58	Hierarchical structure of phaseâ€separated segmented polyurethane elastomers and its effect on properties. Polymer International, 2011, 60, 529-536.	3.1	26
59	Atomic force microscopy based quantitative mapping of elastic moduli in phase separated polyurethanes and silica reinforced rubbers across the length scales. Materials Research Society Symposia Proceedings, 2011, 1318, 1.	0.1	0
60	Micromechanical deformation processes in PP/wood composites: Particle characteristics, adhesion, mechanisms. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1653-1661.	7.6	86
61	Modification of cellulose acetate with oligomeric polycaprolactone by reactive processing: Efficiency, compatibility, and properties. Journal of Applied Polymer Science, 2009, 113, 3255-3263.	2.6	10
62	Thermal analysis of the structure of segmented polyurethane elastomers. Journal of Thermal Analysis and Calorimetry, 2009, 98, 825.	3.6	27
63	Deformation and failure of PP composites reinforced with lignocellulosic fibers: Effect of inherent strength of the particles. Composites Science and Technology, 2009, 69, 1653-1659.	7.8	63
64	Factors affecting the properties of PLA/CaSO4 composites: homogeneity and interactions. EXPRESS Polymer Letters, 2009, 3, 49-61.	2.1	40
65	Network Formation in PP/Layered Silicate Nanocomposites: Modeling and Analysis of Rheological Properties. Macromolecular Symposia, 2008, 267, 47-51.	0.7	9
66	Quantitative Characterization of the Structure of PP/Layered Silicate Nanocomposites at Various Length Scales. Macromolecular Symposia, 2008, 267, 52-56.	0.7	2
67	Aggregation of CaCO3 particles in PP composites: Effect of surface coating. Composites Science and Technology, 2007, 67, 1574-1583.	7.8	100
68	Micromechanical deformation processes in PA/layered silicate nanocomposites: Correlation of structure and properties. Polymer Engineering and Science, 2007, 47, 1235-1245.	3.1	16
69	Wood flour filled polypropylene composites: Interfacial adhesion and micromechanical deformations. Polymer Engineering and Science, 2007, 47, 1246-1255.	3.1	88
70	External and internal plasticization of cellulose acetate with caprolactone: Structure and properties. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 873-883.	2.1	45
71	Surface Characteristics of Layered Silicates:Â Influence on the Properties of Clay/Polymer Nanocomposites. Langmuir, 2006, 22, 7848-7854.	3.5	91
72	Poly(propylene)/montmorillonite/polypyrrole composites: structure and conductivity. Polymers for Advanced Technologies, 2006, 17, 715-726.	3.2	25

#	Article	IF	CITATIONS
73	Wood flour filled PP composites: adhesion, deformation, failure. Polymers for Advanced Technologies, 2006, 17, 967-974.	3.2	73
74	Viscoelastic properties of exfoliated polyamide-6/layered silicate nanocomposite. Journal of Materials Science, 2006, 41, 1843-1846.	3.7	11
75	Morphology Characterization of PP/Clay Nanocomposites Across the Length Scales of the Structural Architecture. Macromolecular Materials and Engineering, 2006, 291, 858-868.	3.6	57
76	Formation and Detection of Clay Network Structure in Poly(propylene)/Layered Silicate Nanocomposites. Macromolecular Rapid Communications, 2006, 27, 132-135.	3.9	53
77	High-density polyethylene/ultrahigh-molecular-weight polyethylene blend. I. The processing, thermal, and mechanical properties. Journal of Applied Polymer Science, 2005, 97, 413-425.	2.6	87
78	Controlling the Deintercalation in Hydrogenated Nitrile Rubber (HNBR)/Organo-Montmorillonite Nanocomposites by Curing with Peroxide. Macromolecular Rapid Communications, 2005, 26, 915-919.	3.9	70
79	Comparison of the mechanical properties and interfacial interactions between talc, kaolin, and calcium carbonate filled polypropylene composites. Journal of Applied Polymer Science, 2004, 91, 3315-3326.	2.6	245
80	Morphology and Properties of Particulate Filled Polymers. Macromolecular Symposia, 2004, 214, 115-134.	0.7	55
81	Aggregation of particulate fillers: factors, determination, properties. Macromolecular Symposia, 2003, 194, 111-124.	0.7	20
82	Quantitative analysis of functional groups in HDPE powder by DRIFT spectroscopy. Macromolecular Symposia, 2003, 202, 97-116.	0.7	15
83	NUCLEATING EFFECT OF MONTMORILLONITE NANOPARTICLES IN POLYPROPYLENE. Journal of Macromolecular Science - Physics, 2002, 41, 1249-1265.	1.0	80
84	ON THE DEPENDENCE OF IMPACT BEHAVIOR ON THE CRYSTALLINE MORPHOLOGY IN POLYPROPYLENES. Journal of Macromolecular Science - Physics, 2002, 41, 1105-1119.	1.0	12
85	Modeling the Effect of a Soft Interlayer on the Stress Distribution around Fibers: Longitudinal and Transverse Loading. Macromolecular Materials and Engineering, 2002, 287, 139-148.	3.6	10
86	Miscibility-property correlations in blends of glassy amorphous polymers. Macromolecular Symposia, 2001, 170, 9-20.	0.7	17
87	Influence of interface interaction on the ultimate tensile properties of polymer composites. Composites, 1990, 21, 255-262.	0.7	452