Richard S Stolarski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1783546/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using satellite measurements of N ₂ O to remove dynamical variability from HCl measurements. Atmospheric Chemistry and Physics, 2018, 18, 5691-5697.	4.9	9
2	Multi-decadal records of stratospheric composition and their relationship to stratospheric circulation change. Atmospheric Chemistry and Physics, 2017, 17, 12081-12096.	4.9	9
3	Estimating uncertainties in the SBUV Version 8.6 merged profile ozone data set. Atmospheric Chemistry and Physics, 2017, 17, 14695-14707.	4.9	23
4	Impact of future nitrous oxide and carbon dioxide emissions on the stratospheric ozone layer. Environmental Research Letters, 2015, 10, 034011.	5.2	28
5	Seasonal variation of ozone in the tropical lower stratosphere: Southern tropics are different from northern tropics. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6196-6206.	3.3	30
6	The Response of Ozone and Nitrogen Dioxide to the Eruption of Mt. Pinatubo at Southern and Northern Midlatitudes. Journals of the Atmospheric Sciences, 2013, 70, 894-900.	1.7	81
7	State of the Climate in 2011. Bulletin of the American Meteorological Society, 2012, 93, S1-S282.	3.3	121
8	Seasonal variations of stratospheric age spectra in the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM). Journal of Geophysical Research, 2012, 117, .	3.3	29
9	Dispersion of the volcanic sulfate cloud from a Mount Pinatubo–like eruption. Journal of Geophysical Research, 2012, 117, .	3.3	77
10	Ozone temperature correlations in the upper stratosphere as a measure of chlorine content. Journal of Geophysical Research, 2012, 117, .	3.3	23
11	State of the Climate in 2010. Bulletin of the American Meteorological Society, 2011, 92, S1-S236.	3.3	135
12	Relationships between the Brewerâ€Dobson circulation and the southern annular mode during austral summer in coupled chemistryâ€climate model simulations. Journal of Geophysical Research, 2010, 115, .	3.3	13
13	Narrowing of the upwelling branch of the Brewerâ€Dobson circulation and Hadley cell in chemistryâ€climate model simulations of the 21st century. Geophysical Research Letters, 2010, 37, .	4.0	15
14	Relative Contribution of Greenhouse Gases and Ozone-Depleting Substances to Temperature Trends in the Stratosphere: A Chemistry–Climate Model Study. Journal of Climate, 2010, 23, 28-42.	3.2	52
15	On the influence of anthropogenic forcings on changes in the stratospheric mean age. Journal of Geophysical Research, 2009, 114, .	3.3	75
16	What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated?. Atmospheric Chemistry and Physics, 2009, 9, 2113-2128.	4.9	165
17	Stratospheric ozone in the post-CFC era. Atmospheric Chemistry and Physics, 2009, 9, 2207-2213.	4.9	108
18	Sensitivity of polar stratospheric ozone loss to uncertainties in chemical reaction kinetics. Atmospheric Chemistry and Physics, 2009, 9, 8651-8660.	4.9	25

#	Article	IF	CITATIONS
19	Estimating When the Antarctic Ozone Hole will Recover. , 2009, , 191-200.		4
20	Athens Statement. , 2009, , 461-464.		0
21	Goddard Earth Observing System chemistryâ€climate model simulations of stratospheric ozoneâ€ŧemperature coupling between 1950 and 2005. Journal of Geophysical Research, 2008, 113, .	3.3	144
22	Evaluation of emissions and transport of CFCs using surface observations and their seasonal cycles and the GEOS CCM simulation with emissionsâ€based forcing. Journal of Geophysical Research, 2008, 113,	3.3	28
23	Contribution of stratospheric ozone to the interannual variability of tropospheric ozone in the northern extratropics. Journal of Geophysical Research, 2008, 113, .	3.3	49
24	Understanding the Changes of Stratospheric Water Vapor in Coupled Chemistry–Climate Model Simulations. Journals of the Atmospheric Sciences, 2008, 65, 3278-3291.	1.7	51
25	On detecting a trend in the residual circulation from observations of column HCl. Geophysical Research Letters, 2006, 33, .	4.0	1
26	Trends in Stratospheric Ozone: Lessons Learned from a 3D Chemical Transport Model. Journals of the Atmospheric Sciences, 2006, 63, 1028-1041.	1.7	93
27	Terrestrial Ozone Depletion due to a Milky Way Gamma-Ray Burst. Astrophysical Journal, 2005, 622, L153-L156.	4.5	49
28	Fall vortex ozone as a predictor of springtime total ozone at high northern latitudes. Atmospheric Chemistry and Physics, 2005, 5, 1655-1663.	4.9	13
29	The Ozone Hole of 2002 as Measured by TOMS. Journals of the Atmospheric Sciences, 2005, 62, 716-720.	1.7	49
30	Gammaâ€Ray Bursts and the Earth: Exploration of Atmospheric, Biological, Climatic, and Biogeochemical Effects. Astrophysical Journal, 2005, 634, 509-533.	4.5	107
31	Version 8 SBUV ozone profile trends compared with trends from a zonally averaged chemical model. Journal of Geophysical Research, 2005, 110, .	3.3	25
32	Radicals and reservoirs in the GMI chemistry and transport model: Comparison to measurements. Journal of Geophysical Research, 2004, 109, .	3.3	59
33	Changes in Column Ozone Correlated with the Stratospheric EP Flux Journal of the Meteorological Society of Japan, 2002, 80, 849-862.	1.8	173
34	History of the Study of Atmospheric Ozone. Ozone: Science and Engineering, 2001, 23, 421-428.	2.5	12
35	Sensitivity of tracers and a stratospheric aircraft perturbation to two-dimensional model transport variations. Journal of Geophysical Research, 2001, 106, 14245-14263.	3.3	14
36	Observations of "Hysteresis―in Backscattered Ultraviolet Ozone Data. Journal of Atmospheric and Oceanic Technology, 2001, 18, 914-924.	1.3	13

RICHARD S STOLARSKI

#	Article	IF	CITATIONS
37	Upper-stratospheric ozone trends 1979-1998. Journal of Geophysical Research, 2000, 105, 14625-14636.	3.3	37
38	Trends in the Vertical Distribution of Ozone. Science, 1999, 285, 1689-1692.	12.6	96
39	Simulation of stratospheric tracers using an improved empirically based two-dimensional model transport formulation. Journal of Geophysical Research, 1999, 104, 23911-23934.	3.3	74
40	Anomalously low ozone over the Arctic. Geophysical Research Letters, 1997, 24, 2689-2692.	4.0	177
41	Atmospheric chemistry A bad winter for Arctic ozone. Nature, 1997, 389, 788-789.	27.8	10
42	Development of the Antarctic ozone hole. Journal of Geophysical Research, 1996, 101, 20909-20924.	3.3	18
43	The ozone layer: the road not taken. Nature, 1996, 381, 551-554.	27.8	64
44	Interhemispheric differences in springtime production of HCl and ClONO2in the polar vortices. Journal of Geophysical Research, 1995, 100, 13967.	3.3	124
45	Ozone Trends from Satellite Data. , 1995, , 397-410.		Ο
46	Record Low Global Ozone in 1992. Science, 1993, 260, 523-526.	12.6	326
47	The evolution of CLO and NO along air parcel trajectories. Geophysical Research Letters, 1993, 20, 2511-2514.	4.0	32
48	Interpretation of NO _x /NO _y observations from AASEâ€II using a model of chemistry along trajectories. Geophysical Research Letters, 1993, 20, 2507-2510.	4.0	35
49	MLS CLO observations and Arctic polar vortex temperatures. Geophysical Research Letters, 1993, 20, 2861-2864.	4.0	25
50	Monitoring Stratospheric Ozone From Space. , 1993, , 319-346.		5
51	Observation of Global Stratospheric Ozone Change. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1992, 96, 257-263.	0.9	4
52	Episodic total ozone minima and associated effects on heterogeneous chemistry and lower stratospheric transport. Journal of Geophysical Research, 1992, 97, 7979-7996.	3.3	42
53	Heterogeneous conversion of N ₂ O ₅ TO HNO ₃ on background stratospheric aerosols: Comparisons of model results with data. Geophysical Research Letters, 1992, 19, 397-400.	4.0	36
54	The 1991 Antarctic Ozone Hole; TOMS observations. Geophysical Research Letters, 1992, 19, 1215-1218.	4.0	16

RICHARD S STOLARSKI

#	Article	IF	CITATIONS
55	Spatial and temporal variability of the extent of chemically processed stratospheric air. Geophysical Research Letters, 1991, 18, 29-32.	4.0	15
56	The influlence of polar heterogeneous processes on reactive chlorine at middle latitudes: Three dimensional model implications. Geophysical Research Letters, 1991, 18, 25-28.	4.0	20
57	Impact of interannual variability (1979–1986) of transport and temperature on ozone as computed using a twoâ€dimensional photochemical model. Journal of Geophysical Research, 1991, 96, 5073-5079.	3.3	13
58	The 1990 Antarctic Ozone Hole as observed by TOMS. Geophysical Research Letters, 1991, 18, 661-664.	4.0	22
59	Total Ozone trends deduced from Nimbus 7 Toms data. Geophysical Research Letters, 1991, 18, 1015-1018.	4.0	470
60	Twoâ€dimensional model calculation of fluorineâ€containing reservoir species in the stratosphere. Journal of Geophysical Research, 1991, 96, 12865-12881.	3.3	45
61	Total ozone during the 88â€89 Northern Hemisphere winter. Geophysical Research Letters, 1990, 17, 317-320.	4.0	10
62	Global threeâ€dimensional constituent fields derived from profile data. Geophysical Research Letters, 1990, 17, 525-528.	4.0	28
63	Three dimensional simulation of hydrogen chloride and hydrogen fluoride during the Airborne Arctic Stratospheric Expedition. Geophysical Research Letters, 1990, 17, 529-532.	4.0	18
64	the 1989 Antarctic Ozone Hole as observed by TOMS. Geophysical Research Letters, 1990, 17, 1267-1270.	4.0	37
65	Impact of heterogeneous reactions on stratospheric chemistry of the Arctic. Geophysical Research Letters, 1989, 16, 131-134.	4.0	18
66	The 1988 Antarctic ozone depletion: Comparison with previous year depletions. Geophysical Research Letters, 1989, 16, 377-380.	4.0	48
67	Comparison of model results transporting the odd nitrogen family with results transporting separate odd nitrogen species. Journal of Geophysical Research, 1989, 94, 9862-9872.	3.3	83
68	The sensitivity of total ozone and ozone perturbation scenarios in a twoâ€dimensional model due to dynamical inputs. Journal of Geophysical Research, 1989, 94, 9873-9887.	3.3	22
69	Formation of the 1988 Antarctic ozone hole. Geophysical Research Letters, 1989, 16, 381-384.	4.0	19
70	The Antarctic Ozone Hole. Scientific American, 1988, 258, 30-36.	1.0	113
71	Reply to Elliott and Rowland. Geophysical Research Letters, 1988, 15, 198-199.	4.0	5
72	The 1987 Antarctic Ozone Hole: A new record low. Geophysical Research Letters, 1988, 15, 1365-1368.	4.0	34

RICHARD S STOLARSKI

#	Article	IF	CITATIONS
73	The use of atmospheric measurements to constrain model predictions of ozone change from chlorine perturbations. Journal of Geophysical Research, 1987, 92, 6662-6674.	3.3	4
74	Diagnostic analysis of two-dimensional monthly average ozone balance with Chapman chemistry. Journal of Atmospheric and Solar-Terrestrial Physics, 1986, 48, 1145-1151.	0.9	1
75	Further interpretation of satellite measurements of Antarctic total ozone. Geophysical Research Letters, 1986, 13, 1210-1212.	4.0	28
76	Twoâ€dimensional monthly average ozone balance from limb infrared monitor of the stratosphere and stratospheric and mesospheric sounder data. Journal of Geophysical Research, 1986, 91, 1103-1116.	3.3	55
77	Nimbus 7 satellite measurements of the springtime Antarctic ozone decrease. Nature, 1986, 322, 808-811.	27.8	414
78	Interpretation of ozone temperature correlations: 2. Analysis of SBUV ozone data. Journal of Geophysical Research, 1985, 90, 10693-10708.	3.3	44
79	Possible effects of volcanic eruptions on stratospheric minor constituent chemistry. Pure and Applied Geophysics, 1979, 117, 486-497.	1.9	20
80	Photoelectrons and electron temperatures in the Venus ionosphere. Journal of Geophysical Research, 1978, 83, 2057-2065.	3.3	20
81	Comparison of stratospheric ozone destruction by fluorocarbons 11, 12, 21, and 22. Geophysical Research Letters, 1976, 3, 603-606.	4.0	14