
Bosoon Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1783313/publications.pdf Version: 2024-02-01

ROSOON PARK

#	Article	IF	CITATIONS
1	Physicochemical indicators coupled with multivariate analysis for comprehensive evaluation of matcha sensory quality. Food Chemistry, 2022, 371, 131100.	4.2	25
2	Characterizing Hyperspectral Microscope Imagery for Classification of Blueberry Firmness with Deep Learning Methods. Agronomy, 2022, 12, 85.	1.3	8
3	Microfluidic Sampling and Biosensing Systems for Foodborne <i>Escherichia coli</i> and <i>Salmonella</i> . Foodborne Pathogens and Disease, 2022, 19, 359-375.	0.8	4
4	An Unsupervised Prediction Model for Salmonella Detection with Hyperspectral Microscopy: A Multi-Year Validation. Applied Sciences (Switzerland), 2021, 11, 895.	1.3	3
5	Label-Free Immunoassay for Multiplex Detections of Foodborne Bacteria in Chicken Carcass Rinse with Surface Plasmon Resonance Imaging. Foodborne Pathogens and Disease, 2021, 18, 202-209.	0.8	6
6	Simultaneous quantification of chemical constituents in matcha with visible-near infrared hyperspectral imaging technology. Food Chemistry, 2021, 350, 129141.	4.2	33
7	Rapid identification of foodborne bacteria with hyperspectral microscopic imaging and artificial intelligence classification algorithms. Food Control, 2021, 130, 108379.	2.8	16
8	ldentifying non-O157 Shiga toxin-producing Escherichia coli (STEC) using deep learning methods with hyperspectral microscope images. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 224, 117386.	2.0	7
9	A novel hyperspectral microscope imaging technology for rapid evaluation of particle size distribution in matcha. Journal of Food Engineering, 2020, 272, 109782.	2.7	16
10	Immunoassay Biosensing of Foodborne Pathogens with Surface Plasmon Resonance Imaging: A Review. Journal of Agricultural and Food Chemistry, 2020, 68, 12927-12939.	2.4	24
11	Rapid and Label-Free Immunosensing of Shiga Toxin Subtypes with Surface Plasmon Resonance Imaging. Toxins, 2020, 12, 280.	1.5	7
12	Assessment of matcha sensory quality using hyperspectral microscope imaging technology. LWT - Food Science and Technology, 2020, 125, 109254.	2.5	10
13	Single-cell classification of foodborne pathogens using hyperspectral microscope imaging coupled with deep learning frameworks. Sensors and Actuators B: Chemical, 2020, 309, 127789.	4.0	40
14	Classification of foodborne bacteria using hyperspectral microscope imaging technology coupled with convolutional neural networks‡. Applied Microbiology and Biotechnology, 2020, 104, 3157-3166.	1.7	29
15	Changing the Landscape: An Introduction to the Agricultural and Food Chemistry Technical Program at the 258th American Chemical Society National Meeting in San Diego. Journal of Agricultural and Food Chemistry, 2020, 68, 12769-12772.	2.4	0
16	Rapid Identification of Campylobacter Strains Cultured Under Aerobic Incubation Using Hyperspectral Microscope Imaging. Journal of Food Protection, 2020, 83, 405-411.	0.8	2
17	Detecting foodborne pathogens with darkfield hyperspectral microscopy. , 2020, , .		0
18	The Influence of Environmental Growth Conditions on Salmonella Spectra Obtained from Hyperspectral Microscope Images. Food Analytical Methods, 2019, 12, 2638-2646.	1.3	6

BOSOON PARK

#	Article	IF	CITATIONS
19	Hyperspectral Image Recovery Using a Color Camera for Detecting Colonies of Foodborne Pathogens on Agar Plate. Journal of Biosystems Engineering, 2019, 44, 169-185.	1.2	3
20	Detection of Salmonella from chicken rinsate with visible/near-infrared hyperspectral microscope imaging compared against RT-PCR. Talanta, 2019, 195, 313-319.	2.9	33
21	Label-free screening of foodborne Salmonella using surface plasmon resonance imaging. Analytical and Bioanalytical Chemistry, 2018, 410, 5455-5464.	1.9	44
22	Effect of immunomagnetic bead size on recovery of foodborne pathogenic bacteria. International Journal of Food Microbiology, 2018, 267, 1-8.	2.1	40
23	Water-based binary polyol process for the controllable synthesis of silver nanoparticles inhibiting human and foodborne pathogenic bacteria. RSC Advances, 2018, 8, 21937-21947.	1.7	15
24	Morphological Image Analysis for Foodborne Bacteria Classification. Transactions of the ASABE, 2018, 61, 5-13.	1.1	5
25	Methods for Hyperspectral Microscope Calibration and Spectra Normalization from Images of Bacteria Cells. Transactions of the ASABE, 2018, 61, 438-448.	1.1	12
26	Label-free SERS detection of Salmonella Typhimurium on DNA aptamer modified AgNR substrates. Journal of Food Measurement and Characterization, 2017, 11, 1773-1779.	1.6	29
27	Simultaneous Detection and Serotyping of Salmonellae by Immunomagnetic Separation and Label-Free Surface-Enhanced Raman Spectroscopy. Food Analytical Methods, 2017, 10, 3181-3193.	1.3	10
28	Label-free biosensing of Salmonella enterica serovars at single-cell level. Journal of Nanobiotechnology, 2017, 15, 40.	4.2	13
29	New Application of Hyperspectral Imaging for Bacterial Cell Classification. NIR News, 2016, 27, 4-6.	1.6	2
30	Future Trends in Hyperspectral Imaging. NIR News, 2016, 27, 35-38.	1.6	6
31	Recent Advancements in Nanobioassays and Nanobiosensors for Foodborne Pathogenic Bacteria Detection. Journal of Food Protection, 2016, 79, 1055-1069.	0.8	31
32	Effect of Sample Preparation on the Discrimination of Bacterial Isolates Cultured in Liquid Nutrient Media Using Laser-Induced Breakdown Spectroscopy (LIBS). Applied Spectroscopy, 2016, 70, 494-504.	1.2	13
33	Identification of Staphylococcus species with hyperspectral microscope imaging and classification algorithms. Journal of Food Measurement and Characterization, 2016, 10, 253-263.	1.6	22
34	Rapid and Early Detection of Salmonella Serotypes with Hyperspectral Microscopy and Multivariate Data Analysis. Journal of Food Protection, 2015, 78, 668-674.	0.8	24
35	Differentiation and classification of bacteria using vancomycin functionalized silver nanorods array based surface-enhanced Raman spectroscopy and chemometric analysis. Talanta, 2015, 139, 96-103.	2.9	67
36	Automatic Counting and Classification of Bacterial Colonies Using Hyperspectral Imaging. Food and Bioprocess Technology, 2015, 8, 2047-2065.	2.6	30

BOSOON PARK

#	Article	IF	CITATIONS
37	Real-Time Hyperspectral Imaging for Food Safety. Food Engineering Series, 2015, , 305-329.	0.3	3
38	Differentiation of big-six non-O157 Shiga-toxin producing Escherichia coli (STEC) on spread plates of mixed cultures using hyperspectral imaging. Journal of Food Measurement and Characterization, 2013, 7, 47-59.	1.6	30
39	Nanocolloid Substrates for Surface-Enhanced Raman Scattering (SERS) Sensor for Biological Applications. ACS Symposium Series, 2013, , 21-41.	0.5	0
40	Surface enhanced Raman scattering (SERS) with biopolymer encapsulated silver nanosubstrates for rapid detection of foodborne pathogens. International Journal of Food Microbiology, 2013, 167, 67-73.	2.1	61
41	Detection and differentiation of Salmonella serotypes using surface enhanced Raman scattering (SERS) technique. Journal of Food Measurement and Characterization, 2013, 7, 1-12.	1.6	31
42	Stable Silver/Biopolymer Hybrid Plasmonic Nanostructures for High Performance Surface Enhanced Raman Scattering (SERS). Journal of Nanoscience and Nanotechnology, 2013, 13, 5382-5390.	0.9	4
43	Detection by Hyperspectral Imaging of Shiga Toxin-Producing Escherichia coli Serogroups O26, O45, O103, O111, O121, and O145 on Rainbow Agar. Journal of Food Protection, 2013, 76, 1129-1136.	0.8	32
44	Hyperspectral Imaging for Differentiating Colonies of Non-0157 Shiga-Toxin Producing <i>Escherichia Coli</i> (STEC) Serogroups on Spread Plates of Pure Cultures. Journal of Near Infrared Spectroscopy, 2013, 21, 81-95.	0.8	37
45	The Effect of Regions of Interest and Spectral Pre-Processing on the Detection of Non-0157 Shiga-Toxin Producing <i>Escherichia Coli</i> Serogroups on Agar Media by Hyperspectral Imaging. Journal of Near Infrared Spectroscopy, 2012, 20, 547-558.	0.8	23
46	Following aptamer–ricin specific binding by single molecule recognition and force spectroscopy measurements. Chemical Communications, 2012, 48, 1644-1646.	2.2	29
47	High-Resolution Single-Molecule Recognition Imaging of the Molecular Details of Ricin–Aptamer Interaction. Journal of Physical Chemistry B, 2012, 116, 5316-5322.	1.2	30
48	Line-scan hyperspectral imaging system for real-time inspection of poultry carcasses with fecal material and ingesta. Computers and Electronics in Agriculture, 2011, 79, 159-168.	3.7	74
49	Motion compensated image processing and optimal parameters for egg crack detection using modified pressure. Sensing and Instrumentation for Food Quality and Safety, 2011, 5, 172-184.	1.5	3
50	Line-scan hyperspectral imaging for real-time in-line poultry fecal detection. Sensing and Instrumentation for Food Quality and Safety, 2011, 5, 25-32.	1.5	49
51	Detection of Campylobacter colonies using hyperspectral imaging. Sensing and Instrumentation for Food Quality and Safety, 2010, 4, 35-49.	1.5	47
52	Multispectral imaging system with interchangeable filter design. Computers and Electronics in Agriculture, 2010, 72, 61-68.	3.7	28
53	Line-scan hyperspectral imaging for real-time poultry fecal detection. , 2010, , .		4
54	Limitation of a localized surface plasmon resonance sensor for Salmonella detection. Sensors and Actuators B: Chemical, 2009, 141, 276-283.	4.0	40

BOSOON PARK

#	Article	IF	CITATIONS
55	Embedded bone fragment detection in chicken fillets using transmittance image enhancement and hyperspectral reflectance imaging. Sensing and Instrumentation for Food Quality and Safety, 2008, 2, 197-207.	1.5	26
56	Textural analysis of hyperspectral images for improving contaminant detection accuracy. Sensing and Instrumentation for Food Quality and Safety, 2008, 2, 208-214.	1.5	13
57	Improving Performance of Real-time Multispectral Imaging System. , 2008, , .		0
58	DETECTION OF FECAL RESIDUE ON POULTRY CARCASSES BY LASER INDUCED FLUORESCENCE IMAGING. , 2008, , .		0
59	Real-time multispectral imaging system for online poultry fecal inspection using unified modeling language. Sensing and Instrumentation for Food Quality and Safety, 2007, 1, 45-54.	1.5	22
60	Design and calibration of a dual-band imaging system. Sensing and Instrumentation for Food Quality and Safety, 2007, 1, 113-121.	1.5	18
61	Real-time image processing for rapid contaminant detection on broiler carcasses. , 2004, , .		2
62	MULTISPECTRAL IMAGING SYSTEM FOR FECAL AND INGESTA DETECTION ON POULTRY CARCASSES. Journal of Food Process Engineering, 2004, 27, 311-327.	1.5	46
63	Simple Algorithms for the Classification of Visible/Near-Infrared and Hyperspectral Imaging Spectra of Chicken Skins, Feces, and Fecal Contaminated Skins. Applied Spectroscopy, 2003, 57, 1609-1612.	1.2	44
64	A Hyperspectral Imaging System for Identification of Faecal and Ingesta Contamination on Poultry Carcasses. Journal of Near Infrared Spectroscopy, 2003, 11, 269-281.	0.8	75
65	REAL-TIME DUAL-WAVELENGTH IMAGE PROCESSING FOR POULTRY SAFETY INSPECTION. Journal of Food Process Engineering, 2000, 23, 329-351.	1.5	23
66	CHANGES IN the VISIBLE/NEAR-INFRARED SPECTRA of CHICKEN CARCASSES IN STORAGE. Journal of Food Process Engineering, 1996, 19, 121-134.	1.5	18
67	Rapid identification of Salmonella serotypes through hyperspectral microscopy with different lighting sources. Journal of Spectral Imaging, 0, , .	0.0	4
68	Unsupervised classification of individual foodborne bacteria from a mixture of bacteria cultures within a hyperspectral microscope image. Journal of Spectral Imaging, 0, , .	0.0	5
69	Hyperspectral microscope imaging methods for multiplex detection of Campylobacter. Journal of Spectral Imaging, 0, , .	0.0	4