Vincenzo Barrese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1783305/publications.pdf

Version: 2024-02-01

361413 377865 1,232 38 20 34 citations h-index g-index papers 38 38 38 1727 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Kv7.2 and Kv7.3 potassium channel subunits as new central regulators of blood pressure. Cardiovascular Research, 2022, 118, 345-346.	3.8	0
2	Kv7.4 channels regulate potassium permeability in neuronal mitochondria. Biochemical Pharmacology, 2022, 197, 114931.	4.4	8
3	Gain of function due to increased opening probability by two <i>KCNQ5</i> pore variants causing developmental and epileptic encephalopathy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2116887119.	7.1	14
4	Dynein regulates Kv7.4 channel trafficking from the cell membrane. Journal of General Physiology, 2021, 153, .	1.9	14
5	Editorial: Kv7 Channels: Structure, Physiology, and Pharmacology. Frontiers in Physiology, 2021, 12, 679317.	2.8	8
6	A Novel Kv7.3 Variant in the Voltage-Sensing S4 Segment in a Family With Benign Neonatal Epilepsy: Functional Characterization and in vitro Rescue by 12 -Hydroxybutyrate. Frontiers in Physiology, 2020, 11, 1040.	2.8	7
7	MARCKS mediates vascular contractility through regulating interactions between voltage-gated Ca2+ channels and PIP2. Vascular Pharmacology, 2020, 132, 106776.	2.1	6
8	SMIT (Sodium-Myo-Inositol Transporter) 1 Regulates Arterial Contractility Through the Modulation of Vascular Kv7 Channels. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2468-2480.	2.4	11
9	Uncovered Contribution of Kv7 Channels to Pulmonary Vascular Tone in Pulmonary Arterial Hypertension. Hypertension, 2020, 76, 1134-1146.	2.7	25
10	Epileptic channelopathies caused by neuronal Kv7 (KCNQ) channel dysfunction. Pflugers Archiv European Journal of Physiology, 2020, 472, 881-898.	2.8	62
11	Angiotensin II Promotes K V 7.4 Channels Degradation Through Reduced Interaction With HSP90 (Heat) Tj ETQq1	1.0.78431 2.7	14.rgBT /Ove
12	KCNQ-Encoded Potassium Channels as Therapeutic Targets. Annual Review of Pharmacology and Toxicology, 2018, 58, 625-648.	9.4	93
13	Investigating the Role of G Protein $\hat{l}^2\hat{l}^3$ in Kv7-Dependent Relaxations of the Rat Vasculature. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2091-2102.	2.4	21
14	In Vitro Neurochemical Assessment of Methylphenidate and Its "Legal High―Analogs 3,4-CTMP and Ethylphenidate in Rat Nucleus Accumbens and Bed Nucleus of the Stria Terminalis. Frontiers in Psychiatry, 2018, 9, 149.	2.6	6
15	Synergistic interplay of $G\hat{l}^2\hat{l}^3$ and phosphatidylinositol 4,5-bisphosphate dictates Kv7.4 channel activity. Pflugers Archiv European Journal of Physiology, 2017, 469, 213-223.	2.8	13
16	Combined in vitro and in silico approaches to the assessment of stimulant properties of novel psychoactive substances – The case of the benzofuran 5-MAPB. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 75, 1-9.	4.8	17
17	Proliferative Role of Kv11 Channels in Murine Arteries. Frontiers in Physiology, 2017, 8, 500.	2.8	6
18	MicroRNA-153 targeting of KCNQ4 contributes to vascular dysfunction in hypertension. Cardiovascular Research, 2016, 112, 581-589.	3.8	43

#	Article	IF	Citations
19	Kv7 Channel Activation Underpins EPAC-Dependent Relaxations of Rat Arteries. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 2404-2411.	2.4	45
20	Expression and function of Kv7.4 channels in rat cardiac mitochondria: possible targets for cardioprotection. Cardiovascular Research, 2016, 110, 40-50.	3.8	65
21	Contribution of Kv7 Channels to Natriuretic Peptide Mediated Vasodilation in Normal and Hypertensive Rats. Hypertension, 2015, 65, 676-682.	2.7	63
22	Protective Role of Kv7 Channels in Oxygen and Glucose Deprivation-Induced Damage in Rat Caudate Brain Slices. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1593-1600.	4.3	11
23	G-protein $\hat{I}^2\hat{I}^3$ subunits are positive regulators of Kv7.4 and native vascular Kv7 channel activity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6497-6502.	7.1	62
24	The Adrenergic System of the Myocardium. , 2015, , 13-24.		0
25	Tailoring therapy for heart failure: the pharmacogenomics of adrenergic receptor signaling. Pharmacogenomics and Personalized Medicine, 2014, 7, 267.	0.7	5
26	Large Conductance Calcium-Activated Potassium Channels: Their Expression and Modulation of Glutamate Release from Nerve Terminals Isolated from Rat Trigeminal Caudal Nucleus and Cerebral Cortex. Neurochemical Research, 2014, 39, 901-910.	3.3	19
27	Critical role of large-conductance calcium- and voltage-activated potassium channels in leptin-induced neuroprotection of N-methyl-d-aspartate-exposed cortical neurons. Pharmacological Research, 2014, 87, 80-86.	7.1	19
28	New advances in beta-blocker therapy in heart failure. Frontiers in Physiology, 2013, 4, 323.	2.8	56
29	Genotype–phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of K _v 7.2 potassium channel subunits. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4386-4391.	7.1	154
30	Specification of skeletal muscle differentiation by repressor element-1 silencing transcription factor (REST)-regulated K _v 7.4 potassium channels. Molecular Biology of the Cell, 2013, 24, 274-284.	2.1	42
31	The Voltage-Sensing Domain of Kv7.2 Channels as a Molecular Target for Epilepsy-Causing Mutations and Anticonvulsants. Frontiers in Pharmacology, 2011, 2, 2.	3.5	24
32	Preâ€synaptic BK channels selectively control glutamate versus GABA release from cortical and hippocampal nerve terminals. Journal of Neurochemistry, 2010, 115, 411-422.	3.9	43
33	Neuronal potassium channel openers in the management of epilepsy: role and potential of retigabine. Clinical Pharmacology: Advances and Applications, 2010, 2, 225.	1.2	23
34	Expression, Localization, and Pharmacological Role of K _v 7 Potassium Channels in Skeletal Muscle Proliferation, Differentiation, and Survival after Myotoxic Insults. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 811-820.	2.5	65
35	Activation of preâ€synaptic Mâ€type K ⁺ channels inhibits [³ H] <scp>d</scp> â€aspartate release by reducing Ca ²⁺ entry through P/Qâ€type voltageâ€gated Ca ²⁺ channels. Journal of Neurochemistry, 2009, 109, 168-181.	3.9	25
36	Involvement of KCNQ2 subunits in [3H]dopamine release triggered by depolarization and pre-synaptic muscarinic receptor activation from rat striatal synaptosomes. Journal of Neurochemistry, 2007, 102, 179-193.	3.9	51

#	Article	IF	CITATIONS
37	Decreased Subunit Stability as a Novel Mechanism for Potassium Current Impairment by a KCNQ2 C Terminus Mutation Causing Benign Familial Neonatal Convulsions. Journal of Biological Chemistry, 2006, 281, 418-428.	3.4	58
38	Functional analysis of novel KCNQ2 and KCNQ3 gene variants found in a large pedigree with benign familial neonatal convulsions (BFNC). Neurogenetics, 2005, 6, 185-193.	1.4	26