
## **Roel Hammink**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1783151/publications.pdf Version: 2024-02-01



ROFI HAMMINK

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Probing the Lewis Acidity of Boronic Acids through Interactions with Arene Substituents. Chemistry -<br>A European Journal, 2022, 28, .                                                            | 1.7 | 8         |
| 2  | Dictating Phenotype, Function, and Fate of Human T Cells with Co‣timulatory Antibodies Presented by<br>Filamentous Immune Cell Mimics. Advanced Therapeutics, 2022, 5, .                           | 1.6 | 8         |
| 3  | Multifunctional, Multivalent PIC Polymer Scaffolds for Targeting Antigen-Specific, Autoreactive B<br>Cells. ACS Biomaterials Science and Engineering, 2022, 8, 1486-1493.                          | 2.6 | 4         |
| 4  | Probing Noncovalent Interactions in [3,3]Metaparacyclophanes. Journal of Organic Chemistry, 2022, 87, 6087-6096.                                                                                   | 1.7 | 2         |
| 5  | Through-Space Stabilization of an Imidazolium Cation by Aromatic Rings. Journal of Organic Chemistry, 2022, 87, 7875-7883.                                                                         | 1.7 | 2         |
| 6  | Semiflexible polymer scaffolds: an overview of conjugation strategies. Polymer Chemistry, 2021, 12, 1362-1392.                                                                                     | 1.9 | 13        |
| 7  | Do Sulfonamides Interact with Aromatic Rings?. Chemistry - A European Journal, 2021, 27, 5721-5729.                                                                                                | 1.7 | 7         |
| 8  | Semiflexible Immunobrushes Induce Enhanced T Cell Activation and Expansion. ACS Applied Materials<br>& Interfaces, 2021, 13, 16007-16018.                                                          | 4.0 | 14        |
| 9  | Multivalent Sgc8c-aptamer decorated polymer scaffolds for leukemia targeting. Chemical Communications, 2021, 57, 2744-2747.                                                                        | 2.2 | 12        |
| 10 | Probing Single-Cell Macrophage Polarization and Heterogeneity Using Thermo-Reversible Hydrogels in<br>Droplet-Based Microfluidics. Frontiers in Bioengineering and Biotechnology, 2021, 9, 715408. | 2.0 | 12        |
| 11 | Throughâ€Space Polarâ€i€ Interactions in 2,6â€Diarylthiophenols. ChemPhysChem, 2020, 21, 1080-1080.                                                                                                | 1.0 | Ο         |
| 12 | Influence of Network Topology on the Viscoelastic Properties of Dynamically Crosslinked Hydrogels.<br>Frontiers in Chemistry, 2020, 8, 536.                                                        | 1.8 | 11        |
| 13 | Throughâ€Space Polarâ€i€ Interactions in 2,6â€Diarylthiophenols. ChemPhysChem, 2020, 21, 1092-1100.                                                                                                | 1.0 | 9         |
| 14 | Synthetic Semiflexible and Bioactive Brushes. Biomacromolecules, 2019, 20, 2587-2597.                                                                                                              | 2.6 | 10        |
| 15 | Biomaterial-Based Activation and Expansion of Tumor-Specific T Cells. Frontiers in Immunology, 2019, 10, 931.                                                                                      | 2.2 | 15        |
| 16 | Probing Through-Space Polarâ^'Ï€ Interactions in 2,6-Diarylphenols. Journal of Organic Chemistry, 2019,<br>84, 3632-3637.                                                                          | 1.7 | 11        |
| 17 | Controlling the gelation temperature of biomimetic polyisocyanides. Chinese Chemical Letters, 2018, 29, 281-284.                                                                                   | 4.8 | 19        |
| 18 | Injectable Biomimetic Hydrogels as Tools for Efficient T Cell Expansion and Delivery. Frontiers in<br>Immunology, 2018, 9, 2798.                                                                   | 2.2 | 60        |

**ROEL HAMMINK** 

| #  | Article                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Cytokineâ€Functionalized Synthetic Dendritic Cells for TÂCell Targeted Immunotherapies. Advanced<br>Therapeutics, 2018, 1, 1800021.                                      | 1.6  | 25        |
| 20 | Controlling T-Cell Activation with Synthetic Dendritic Cells Using the Multivalency Effect. ACS Omega, 2017, 2, 937-945.                                                 | 1.6  | 48        |
| 21 | Affinity-Based Purification of Polyisocyanopeptide Bioconjugates. Bioconjugate Chemistry, 2017, 28, 2560-2568.                                                           | 1.8  | 11        |
| 22 | Biomimetic Stress Sensitive Hydrogel Controlled by DNA Nanoswitches. Biomacromolecules, 2017, 18, 3310-3317.                                                             | 2.6  | 31        |
| 23 | Strategies To Increase the Thermal Stability of Truly Biomimetic Hydrogels: Combining Hydrophobicity and Directed Hydrogen Bonding. Macromolecules, 2017, 50, 9058-9065. | 2.2  | 36        |
| 24 | DNAâ€Responsive Polyisocyanopeptide Hydrogels with Stressâ€Stiffening Capacity. Advanced Functional<br>Materials, 2016, 26, 9075-9082.                                   | 7.8  | 42        |
| 25 | Order at Extreme Dilution. Advanced Functional Materials, 2016, 26, 9009-9016.                                                                                           | 7.8  | 3         |
| 26 | Stress-stiffening-mediated stem-cell commitment switch in soft responsive hydrogels. Nature<br>Materials, 2016, 15, 318-325.                                             | 13.3 | 319       |
| 27 | Abstract IA29: Towards synthetic immune cells for cancer immunotherapy. , 2016, , .                                                                                      |      | 0         |
| 28 | Polymer-Based Synthetic Dendritic Cells for Tailoring Robust and Multifunctional T Cell Responses.<br>ACS Chemical Biology, 2015, 10, 485-492.                           | 1.6  | 43        |
| 29 | Therapeutic nanoworms: towards novel synthetic dendritic cells for immunotherapy. Chemical                                                                               | 3.7  | 91        |