Massimo Vitale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/178252/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CD73/Adenosine Pathway Involvement in the Interaction of Non-Small Cell Lung Cancer Stem Cells and Bone Cells in the Pre-Metastatic Niche. International Journal of Molecular Sciences, 2022, 23, 5126.	1.8	9
2	Blocking HIF to Enhance NK Cells: Hints for New Anti-Tumor Therapeutic Strategies?. Vaccines, 2021, 9, 1144.	2.1	4
3	Escape of tumor cells from the NK cell cytotoxic activity. Journal of Leukocyte Biology, 2020, 108, 1339-1360.	1.5	14
4	Editorial: Natural Killer Cells in Tissue Compartments. Frontiers in Immunology, 2020, 11, 258.	2.2	7
5	Mechanisms of Resistance to NK Cell Immunotherapy. Cancers, 2020, 12, 893.	1.7	34
6	Killer Ig-Like Receptors (KIRs): Their Role in NK Cell Modulation and Developments Leading to Their Clinical Exploitation. Frontiers in Immunology, 2019, 10, 1179.	2.2	269
7	Expression of the Pseudorabies Virus gB Glycoprotein Triggers NK Cell Cytotoxicity and Increases Binding of the Activating NK Cell Receptor PILRβ. Journal of Virology, 2019, 93, .	1.5	10
8	An Historical Overview: The Discovery of How NK Cells Can Kill Enemies, Recruit Defense Troops, and More. Frontiers in Immunology, 2019, 10, 1415.	2.2	57
9	NKp44-NKp44 Ligand Interactions in the Regulation of Natural Killer Cells and Other Innate Lymphoid Cells in Humans. Frontiers in Immunology, 2019, 10, 719.	2.2	50
10	The Uncovered Role of Immune Cells and NK Cells in the Regulation of Bone Metastasis. Frontiers in Endocrinology, 2019, 10, 145.	1.5	10
11	NK Cell-Based Immunotherapy in Cancer Metastasis. Cancers, 2019, 11, 29.	1.7	82
12	Isolation, Expansion, and Characterization of Natural Killer Cells and Their Precursors as a Tool to Study Cancer Immunosurveillance. Methods in Molecular Biology, 2019, 1884, 87-117.	0.4	3
13	Herpesvirus Evasion of Natural Killer Cells. Journal of Virology, 2018, 92, .	1.5	63
14	Human natural killer cells and other innate lymphoid cells in cancer: Friends or foes?. Immunology Letters, 2018, 201, 14-19.	1.1	50
15	Hypoxia Modifies the Transcriptome of Human NK Cells, Modulates Their Immunoregulatory Profile, and Influences NK Cell Subset Migration. Frontiers in Immunology, 2018, 9, 2358.	2.2	104
16	NK-cell Editing Mediates Epithelial-to-Mesenchymal Transition via Phenotypic and Proteomic Changes in Melanoma Cell Lines. Cancer Research, 2018, 78, 3913-3925.	0.4	53
17	Nidogen-1 is a novel extracellular ligand for the NKp44 activating receptor. Oncolmmunology, 2018, 7, e1470730.	2.1	54
18	NK Cells, Tumor Cell Transition, and Tumor Progression in Solid Malignancies: New Hints for NK-Based Immunotherapy?. Journal of Immunology Research, 2016, 2016, 1-13.	0.9	65

#	Article	IF	CITATIONS
19	Pseudorabies Virus US3 Protein Kinase Protects Infected Cells from NK Cell-Mediated Lysis via Increased Binding of the Inhibitory NK Cell Receptor CD300a. Journal of Virology, 2016, 90, 1522-1533.	1.5	26
20	Natural Killer (NK)/melanoma cell interaction induces NK-mediated release of chemotactic High Mobility Group Box-1 (HMGB1) capable of amplifying NK cell recruitment. Oncolmmunology, 2015, 4, e1052353.	2.1	34
21	Role of NK cells in immunotherapy and virotherapy of solid tumors. Immunotherapy, 2015, 7, 861-882.	1.0	17
22	NK Receptors: Tools for a Polyvalent Cell Family. Frontiers in Immunology, 2014, 5, 617.	2.2	5
23	TLR/NCR/KIR: Which One to Use and When?. Frontiers in Immunology, 2014, 5, 105.	2.2	77
24	Combination of ascorbate/epigallocatechin-3-gallate/gemcitabine synergistically induces cell cycle deregulation and apoptosis in mesothelioma cells. Toxicology and Applied Pharmacology, 2014, 274, 35-41.	1.3	21
25	Effect of tumor cells and tumor microenvironment on NKâ€ɛell function. European Journal of Immunology, 2014, 44, 1582-1592.	1.6	313
26	Modulation of CD112 by the alphaherpesvirus gD protein suppresses DNAM-1–dependent NK cell-mediated lysis of infected cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16118-16123.	3.3	55
27	Hypoxia downregulates the expression of activating receptors involved in <scp>NK</scp> â€cellâ€mediated target cell killing without affecting <scp>ADCC</scp> . European Journal of Immunology, 2013, 43, 2756-2764.	1.6	210
28	How melanoma cells inactivate NK cells. Oncolmmunology, 2012, 1, 974-975.	2.1	26
29	Melanoma Cells Inhibit Natural Killer Cell Function by Modulating the Expression of Activating Receptors and Cytolytic Activity. Cancer Research, 2012, 72, 1407-1415.	0.4	267
30	Melanoma Cells Inhibit NK Cell Functions—Response. Cancer Research, 2012, 72, 5430-5430.	0.4	5
31	Melanoma immunoediting by NK cells. Oncolmmunology, 2012, 1, 1607-1609.	2.1	15
32	Melanoma cells become resistant to <scp>NK</scp> â€cellâ€mediated killing when exposed to <scp>NK</scp> â€cell numbers compatible with <scp>NK</scp> â€cell infiltration in the tumor. European Journal of Immunology, 2012, 42, 1833-1842.	1.6	94
33	Lack of expression of inhibitory KIR3DL1 receptor in patients with natural killer cell-type lymphoproliferative disease of granular lymphocytes. Haematologica, 2010, 95, 1722-1729.	1.7	24
34	Combined Genotypic and Phenotypic Killer Cell Ig-Like Receptor Analyses Reveal KIR2DL3 Alleles Displaying Unexpected Monoclonal Antibody Reactivity: Identification of the Amino Acid Residues Critical for Staining. Journal of Immunology, 2010, 185, 433-441.	0.4	32
35	GPR56 as a novel marker identifying the CD56dull CD16+ NK cell subset both in blood stream and in inflamed peripheral tissues. International Immunology, 2010, 22, 91-100.	1.8	33
36	Crosstalk between decidual NK and CD14 ⁺ myelomonocytic cells results in induction of Tregs and immunosuppression. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11918-11923.	3.3	220

#	Article	IF	CITATIONS
37	Melanoma-associated fibroblasts modulate NK cell phenotype and antitumor cytotoxicity. Proceedings of the United States of America, 2009, 106, 20847-20852.	3.3	264
38	Natural killer cells kill human melanoma cells with characteristics of cancer stem cells. International Immunology, 2009, 21, 793-801.	1.8	134
39	Analysis of NK cell/DC interaction in NK-type lymphoproliferative disease of granular lymphocytes (LDGL): role of DNAM-1 and NKp30. Experimental Hematology, 2009, 37, 1167-1175.	0.2	15
40	Evidence that the KIR2DS5 gene codes for a surface receptor triggering natural killer cell function. European Journal of Immunology, 2008, 38, 2284-2289.	1.6	53
41	Perturbations of natural killer cell regulatory functions in respiratory allergic diseases. Journal of Allergy and Clinical Immunology, 2008, 121, 479-485.	1.5	58
42	The tryptophan catabolite l-kynurenine inhibits the surface expression of NKp46- and NKG2D-activating receptors and regulates NK-cell function. Blood, 2006, 108, 4118-4125.	0.6	323
43	Effector and regulatory events during natural killer?dendritic cell interactions. Immunological Reviews, 2006, 214, 219-228.	2.8	261
44	NK-dependent DC maturation is mediated by TNFα and IFNγ released upon engagement of the NKp30 triggering receptor. Blood, 2005, 106, 566-571.	0.6	365
45	Human natural killer cells: Molecular mechanisms controlling NK cell activation and tumor cell lysis. Immunology Letters, 2005, 100, 7-13.	1.1	113
46	Early liaisons between cells of the innate immune system in inflamed peripheral tissues. Trends in Immunology, 2005, 26, 668-675.	2.9	157
47	Isolation of a novel KIR2DL3-specific mAb: comparative analysis of the surface distribution and function of KIR2DL2, KIR2DL3 and KIR2DS2. International Immunology, 2004, 16, 1459-1466.	1.8	15
48	The small subset of CD56brightCD16– natural killer cells is selectively responsible for both cell proliferation and interferon-l³ production upon interaction with dendritic cells. European Journal of Immunology, 2004, 34, 1715-1722.	1.6	178
49	CpG and double-stranded RNA trigger human NK cells by Toll-like receptors: Induction of cytokine release and cytotoxicity against tumors and dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10116-10121.	3.3	412
50	Different checkpoints in human NK-cell activation. Trends in Immunology, 2004, 25, 670-676.	2.9	140
51	Learning how to discriminate between friends and enemies, a lesson from Natural Killer cells. Molecular Immunology, 2004, 41, 569-575.	1.0	68
52	The natural killer cell-mediated killing of autologous dendritic cells is confined to a cell subset expressing CD94/NKG2A, but lacking inhibitory killer Ig-like receptors. European Journal of Immunology, 2003, 33, 1657-1666.	1.6	229
53	Identification of PVR (CD155) and Nectin-2 (CD112) as Cell Surface Ligands for the Human DNAM-1 (CD226) Activating Molecule. Journal of Experimental Medicine, 2003, 198, 557-567.	4.2	779
54	Transforming growth factor Â1 inhibits expression of NKp30 and NKG2D receptors: Consequences for the NK-mediated killing of dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4120-4125.	3.3	588

#	Article	IF	CITATIONS
55	Expression and function of KIR and natural cytotoxicity receptors in NK-type lymphoproliferative diseases of granular lymphocytes. Blood, 2003, 102, 1797-1805.	0.6	106
56	Analysis of natural killer cells in TAP2-deficient patients: expression of functional triggering receptors and evidence for the existence of inhibitory receptor(s) that prevent lysis of normal autologous cells. Blood, 2002, 99, 1723-1729.	0.6	68
57	ACTIVATINGRECEPTORS ANDCORECEPTORSINVOLVED INHUMANNATURALKILLERCELL-MEDIATEDCYTOLYSIS. Annual Review of Immunology, 2001, 19, 197-223.	9.5	1,609
58	Human natural killer cell receptors and co-receptors. Immunological Reviews, 2001, 181, 203-214.	2.8	273
59	Identification of NKp80, a novel triggering molecule expressed by human NK cells. European Journal of Immunology, 2001, 31, 233-242.	1.6	185
60	Role of NKG2D in tumor cell lysis mediated by human NK cells: cooperation with natural cytotoxicity receptors and capability of recognizing tumors of nonepithelial origin. European Journal of Immunology, 2001, 31, 1076-1086.	1.6	299
61	The analysis of the natural killer-like activity of human cytolytic T lymphocytes revealed HLA-E as a novel target for TCR α/β-mediated recognition. European Journal of Immunology, 2001, 31, 3687-3693.	1.6	91
62	NKp44, A Triggering Receptor Involved in Tumor Cell Lysis by Activated Human Natural Killer Cells, Is a Novel Member of the Immunoglobulin Superfamily. Journal of Experimental Medicine, 1999, 189, 787-796.	4.2	396
63	Identification and Molecular Cloning of P75/Airm1, a Novel Member of the Sialoadhesin Family That Functions as an Inhibitory Receptor in Human Natural Killer Cells. Journal of Experimental Medicine, 1999, 190, 793-802.	4.2	201
64	The leukocyte Ig-like receptor (LIR)-1 for the cytomegalovirus UL18 protein displays a broad specificity for different HLA class I alleles: analysis of LIR-1+ NK cell clones. International Immunology, 1999, 11, 29-35.	1.8	98
65	Engagement of p75/AIRM1 or CD33 inhibits the proliferation of normal or leukemic myeloid cells. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 15091-15096.	3.3	137
66	Molecular and functional characterization of IRp60, a member of the immunoglobulin superfamily that functions as an inhibitory receptor in human NK cells. European Journal of Immunology, 1999, 29, 3148-3159.	1.6	135
67	NKp44, a Novel Triggering Surface Molecule Specifically Expressed by Activated Natural Killer Cells, Is Involved in Non–Major Histocompatibility Complex–restricted Tumor Cell Lysis. Journal of Experimental Medicine, 1998, 187, 2065-2072.	4.2	641
68	p46, a Novel Natural Killer Cell–specific Surface Molecule That Mediates Cell Activation. Journal of Experimental Medicine, 1997, 186, 1129-1136.	4.2	465
69	Characterization of an Antigen That Is Recognized on a Melanoma Showing Partial HLA Loss by CTL Expressing an NK Inhibitory Receptor. Immunity, 1997, 6, 199-208.	6.6	685
70	Major histocompatibility complex class I-specific receptors on human natural killer and T lymphocytes. Immunological Reviews, 1997, 155, 105-117.	2.8	333
71	FUNCTION AND SPECIFICITY OF HUMAN NATURAL KILLER CELL RECEPTORS. International Journal of Immunogenetics, 1997, 24, 455-468.	1.2	7
72	Inhibitory and Activatory Receptors for HLA Class I Molecules in Human Natural Killer Cells. Chemical Immunology and Allergy, 1996, 64, 77-87.	1.7	7

#	Article	IF	CITATIONS
73	Inhibitory and Activatory Receptors for HLA Class I Molecules in Human Natural Killer Cells. Chemical Immunology and Allergy, 1996, 64, 77-87.	1.7	4
74	Physical and functional independency of p70 and p58 natural killer (NK) cell receptors for HLA class I: their role in the definition of different groups of alloreactive NK cell clones Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 1453-1457.	3.3	103
75	RECEPTORS FOR HLA CLASS-I MOLECULES IN HUMAN NATURAL KILLER CELLS. Annual Review of Immunology, 1996, 14, 619-648.	9.5	833
76	A novel surface molecule homologous to the p58/p50 family of receptors is selectively expressed on a subset of human natural killer cells and induces both triggering of cell functions and proliferation. European Journal of Immunology, 1996, 26, 1816-1824.	1.6	126
77	CD94 functions as a natural killer cell inhibitory receptor for different HLA class I alleles: identification of the inhibitory form of CD94 by the use of novel monoclonal antibodies. European Journal of Immunology, 1996, 26, 2487-2492.	1.6	130
78	The human leukocyte antigen (HLA)-C-specific "activatory" or "inhibitory" natural killer cell receptors display highly homologous extracellular domains but differ in their transmembrane and intracytoplasmic portions Journal of Experimental Medicine, 1996, 183, 645-650.	4.2	326
79	Existence of both inhibitory (p58) and activatory (p50) receptors for HLA-C molecules in human natural killer cells Journal of Experimental Medicine, 1995, 182, 875-884.	4.2	439
80	Coexpression of two functionally independent p58 inhibitory receptors in human natural killer cell clones results in the inability to kill all normal allogeneic target cells Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 3536-3540.	3.3	64
81	General role of HLA class I molecules in the protection of target cells from lysis by natural killer cells: evidence that the free heavy chains of class I molecules are not sufficient to mediate the protective effect. International Immunology, 1995, 7, 393-400.	1.8	31
82	Molecular clones of the p58 NK cell receptor reveal immunoglobulin-related molecules with diversity in both the extra- and intracellular domains. Immunity, 1995, 2, 439-449.	6.6	561
83	Human natural killer cell receptors for HLA-class I molecules. Evidence that the Kp43 (CD94) molecule functions as receptor for HLA-B alleles Journal of Experimental Medicine, 1994, 180, 545-555.	4.2	204
84	Self class I molecules protect normal cells from lysis mediated by autologous natural killer cells. European Journal of Immunology, 1994, 24, 1003-1006.	1.6	91
85	The human natural killer cell receptor for major histocompatibility complex class I molecules. Surface modulation of p58 molecules and their linkage to CD3 ζ chain, FcεRI γ chain and the p56lck kinase. European Journal of Immunology, 1994, 24, 2527-2534.	1.6	55
86	CD45-mediated regulation of LFA1 function in human natural killer cells. Anti-CD45 monoclonal antibodies inhibit the calcium mobilization induced via LFA1 molecules. European Journal of Immunology, 1993, 23, 2454-2463.	1.6	36
87	P58 molecules as putative receptors for major histocompatibility complex (MHC) class I molecules in human natural killer (NK) cells. Anti-p58 antibodies reconstitute lysis of MHC class I-protected cells in NK clones displaying different specificities Journal of Experimental Medicine, 1993, 178, 597-604.	4.2	513
88	Production and characterization of murine monoclonal antibodies recognizing HLA-DQ polymorphisms obtained by immunizing mice with transfected L cells. Human Immunology, 1992, 34, 126-134.	1.2	3
89	ANALYSIS OF HLA SPECIFICITY OF HUMAN MONOCLONAL ANTIBODIES BY CYTOFLUORIMETRY AND CELL ELISA. International Journal of Immunogenetics, 1991, 18, 345-353.	1.2	Ο