List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1782481/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of food intake by intestinal hormones in brain. Journal of Diabetes Investigation, 2022, 13, 17-18.	2.4	4
2	Effects of glucagonâ€like peptideâ€1 receptor agonists on cardiovascular and renal outcomes: A <scp>metaâ€analysis</scp> and <scp>metaâ€regression</scp> analysis. Diabetes, Obesity and Metabolism, 2022, 24, 1029-1037.	4.4	18
3	S-Protected Cysteine Sulfoxide-Enabled Tryptophan-Selective Modification with Application to Peptide Lipidation. ACS Medicinal Chemistry Letters, 2022, 13, 1125-1130.	2.8	3
4	Perioperative diabetes mellitus affects the outcomes of lung transplant recipients. European Journal of Cardio-thoracic Surgery, 2022, 62, .	1.4	3
5	Clinical Practice Changes After Post-Market Safety Reports on Desmopressin Orally Disintegrating Tablet in Japan: A Single-Center Retrospective Study. Journal of Clinical Medicine Research, 2021, 13, 92-100.	1.2	1
6	Gene expression of nutrient-sensing molecules in I cells of CCK reporter male mice. Journal of Molecular Endocrinology, 2021, 66, 11-22.	2.5	7
7	Carbonic anhydrase 8 (CAR8) negatively regulates GLP-1 secretion from enteroendocrine cells in response to long-chain fatty acids. American Journal of Physiology - Renal Physiology, 2021, 320, G617-G626.	3.4	3
8	First-in-Human Evaluation of Positron Emission Tomography/Computed Tomography With [18F]FB(ePEG12)12-Exendin-4: A Phase 1 Clinical Study Targeting GLP-1 Receptor Expression Cells in Pancreas. Frontiers in Endocrinology, 2021, 12, 717101.	3.5	12
9	Medium-chain triglycerides inhibit long-chain triglyceride-induced GIP secretion through GPR120-dependent inhibition of CCK. IScience, 2021, 24, 102963.	4.1	11
10	Medical nutrition therapy and dietary counseling for patients with diabetes-energy, carbohydrates, protein intake and dietary counseling. Diabetology International, 2020, 11, 224-239.	1.4	7
11	Effects of metformin on blood glucose levels and bodyweight mediated through intestinal effects. Journal of Diabetes Investigation, 2020, 11, 1420-1421.	2.4	5
12	Enteroendocrine K Cells Exert Complementary Effects to Control Bone Quality and Mass in Mice. Journal of Bone and Mineral Research, 2020, 35, 1363-1374.	2.8	12
13	Absence of GIP secretion alleviates age-related obesity and insulin resistance. Journal of Endocrinology, 2020, 245, 13-20.	2.6	13
14	Low-dose Selective Arterial Calcium Stimulation Test for Localizing Insulinoma: A Single-center Experience of Five Consecutive Cases. Internal Medicine, 2020, 59, 2397-2403.	0.7	5
15	Solidâ€phase extraction treatment is required for measurement of active glucagonâ€like peptideâ€1 by enzymeâ€linked immunosorbent assay kit affected by heterophilic antibodies. Journal of Diabetes Investigation, 2019, 10, 302-308.	2.4	3
16	Free fatty acid receptors, GÂproteinâ€coupled receptorÂ120 and GÂproteinâ€coupled receptorÂ40, are essential for oilâ€induced gastric inhibitory polypeptide secretion. Journal of Diabetes Investigation, 2019, 10, 1430-1437.	2.4	21
17	Medium-chain triglyceride diet stimulates less GIP secretion and suppresses body weight and fat mass gain compared with long-chain triglyceride diet. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E53-E64.	3.5	13
18	Sphingosine kinase 1–interacting protein is a dual regulator of insulin and incretin secretion. FASEB Journal, 2019, 33, 6239-6253.	0.5	6

#	Article	IF	CITATIONS
19	Glucoseâ€dependent insulinotropic polypeptide deficiency reduced fat accumulation and insulin resistance, but deteriorated bone loss in ovariectomized mice. Journal of Diabetes Investigation, 2019, 10, 909-914.	2.4	5
20	Gastric inhibitory polypeptide/glucoseâ€dependent insulinotropic polypeptide signaling in adipose tissue. Journal of Diabetes Investigation, 2019, 10, 3-5.	2.4	9
21	Distribution and hormonal characterization of primary murine L cells throughout the gastrointestinal tract. Journal of Diabetes Investigation, 2018, 9, 25-32.	2.4	23
22	Whole-exome sequencing in a Japanese family with highly aggregated diabetes identifies a candidate susceptibility mutation in ADAMTSL3. Diabetes Research and Clinical Practice, 2018, 135, 143-149.	2.8	7
23	Effects of three major amino acids found in Japanese broth on glucose metabolism and gastric emptying. Nutrition, 2018, 46, 153-158.e1.	2.4	10
24	The Effect of White Rice and White Bread as Staple Foods on Gut Microbiota and Host Metabolism. Nutrients, 2018, 10, 1323.	4.1	15
25	Glucose-dependent insulinotropic polypeptide is required for moderate high-fat diet- but not high-carbohydrate diet-induced weight gain. American Journal of Physiology - Endocrinology and Metabolism, 2018, 314, E572-E583.	3.5	17
26	Transcriptional factor Pdx1 is involved in age-related GIP hypersecretion in mice. American Journal of Physiology - Renal Physiology, 2018, 315, G272-G282.	3.4	10
27	Inhibition of Gastric Inhibitory Polypeptide Receptor Signaling in Adipose Tissue Reduces Insulin Resistance and Hepatic Steatosis in High-Fat Diet–Fed Mice. Diabetes, 2017, 66, 868-879.	0.6	74
28	Long-Chain Free Fatty Acid Receptor GPR120 Mediates Oil-Induced GIP Secretion Through CCK in Male Mice. Endocrinology, 2017, 158, 1172-1180.	2.8	51
29	Role of GIP receptor signaling in β-cell survival. Diabetology International, 2017, 8, 137-138.	1.4	6
30	Attenuated secretion of glucose-dependent insulinotropic polypeptide (GIP) does not alleviate hyperphagic obesity and insulin resistance in ob/ob mice. Molecular Metabolism, 2017, 6, 288-294.	6.5	21
31	Chronic high-sucrose diet increases fibroblast growth factor 21 production and energy expenditure in mice. Journal of Nutritional Biochemistry, 2017, 49, 71-79.	4.2	37
32	Diverse metabolic effects of O-GlcNAcylation in the pancreas but limited effects in insulin-sensitive organs in mice. Diabetologia, 2017, 60, 1761-1769.	6.3	25
33	Nardilysin Is Required for Maintaining Pancreatic Î ² -Cell Function. Diabetes, 2016, 65, 3015-3027.	0.6	21
34	Plasma Incretin Levels and Dipeptidyl Peptidase-4 Activity in Patients with Obstructive Sleep Apnea. Annals of the American Thoracic Society, 2016, 13, 1378-1387.	3.2	21
35	Mechanisms of fatâ€induced gastric inhibitory polypeptide/glucoseâ€dependent insulinotropic polypeptide secretion from K cells. Journal of Diabetes Investigation, 2016, 7, 20-26.	2.4	26
36	Role of clock genes in insulin secretion. Journal of Diabetes Investigation, 2016, 7, 822-823.	2.4	11

#	Article	IF	CITATIONS
37	Ubc13 haploinsufficiency protects against age-related insulin resistance and high-fat diet-induced obesity. Scientific Reports, 2016, 6, 35983.	3.3	5
38	Sitagliptin monotherapy has better effect on insulinogenic index than glimepiride monotherapy in Japanese patients with type 2 diabetes mellitus: a 52-week, multicenter, parallel-group randomized controlled trial. Diabetology and Metabolic Syndrome, 2016, 8, 15.	2.7	11
39	Enteral supplementation with glutamine, fiber, and oligosaccharide modulates incretin and glucagonâ€ike peptideâ€2 secretion. Journal of Diabetes Investigation, 2015, 6, 302-308.	2.4	11
40	Fructose induces glucoseâ€dependent insulinotropic polypeptide, glucagonâ€like peptideâ€1 and insulin secretion: Role of adenosine triphosphateâ€sensitive K + channels. Journal of Diabetes Investigation, 2015, 6, 522-526.	2.4	19
41	Early phase glucagon and insulin secretory abnormalities, but not incretin secretion, are similarly responsible for hyperglycemia after ingestion of nutrients. Journal of Diabetes and Its Complications, 2015, 29, 413-421.	2.3	53
42	Fatty acid-binding protein 5 regulates diet-induced obesity via GIP secretion from enteroendocrine K cells in response to fat ingestion. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E583-E591.	3.5	42
43	Free Fatty Acid Receptor GPR120 Is Highly Expressed in Enteroendocrine K Cells of the Upper Small Intestine and Has a Critical Role in GIP Secretion After Fat Ingestion. Endocrinology, 2015, 156, 837-846.	2.8	97
44	Color Record in Self-Monitoring of Blood Glucose Improves Glycemic Control by Better Self-Management. Diabetes Technology and Therapeutics, 2014, 16, 447-453.	4.4	7
45	KATP channel as well as SGLT1 participates in GIP secretion in the diabetic state. Journal of Endocrinology, 2014, 222, 191-200.	2.6	35
46	Sensory and motor physiological functions are impaired in gastric inhibitory polypeptide receptorâ€deficient mice. Journal of Diabetes Investigation, 2014, 5, 31-37.	2.4	11
47	Chronic Reduction of GIP Secretion Alleviates Obesity and Insulin Resistance Under High-Fat Diet Conditions. Diabetes, 2014, 63, 2332-2343.	0.6	139
48	Selfâ€monitoring of blood glucose (SMBG) improves glycaemic control in oral hypoglycaemic agent (OHA)â€treated type 2 diabetes (SMBGâ€OHA study). Diabetes/Metabolism Research and Reviews, 2013, 29, 77-84.	4.0	19
49	Enteral supplement enriched with glutamine, fiber, and oligosaccharide attenuates experimental colitis in mice. Nutrition, 2013, 29, 549-555.	2.4	22
50	A hospital-based cross-sectional study to develop an estimation formula for 2-h post-challenge plasma glucose for screening impaired glucose tolerance. Diabetes Research and Clinical Practice, 2013, 101, 218-225.	2.8	0
51	Transcriptional Regulatory Factor X6 (Rfx6) Increases Gastric Inhibitory Polypeptide (GIP) Expression in Enteroendocrine K-cells and Is Involved in CIP Hypersecretion in High Fat Diet-induced Obesity. Journal of Biological Chemistry, 2013, 288, 1929-1938.	3.4	79
52	Lack of Goal Attainment Regarding the Low-density Lipoprotein Cholesterol Level in the Management of Type 2 Diabetes Mellitus. Internal Medicine, 2013, 52, 2409-2415.	0.7	4
53	Effects of glucose and meal ingestion on incretin secretion in Japanese subjects with normal glucose tolerance. Journal of Diabetes Investigation, 2012, 3, 80-85.	2.4	31
54	Ingestion of a moderate highâ€sucrose diet results in glucose intolerance with reduced liver glucokinase activity and impaired glucagonâ€like peptideâ€1 secretion. Journal of Diabetes Investigation, 2012, 3, 432-440.	2.4	40

#	Article	IF	CITATIONS
55	Role of sodiumâ€glucose transporters in glucose uptake of the intestine and kidney. Journal of Diabetes Investigation, 2012, 3, 352-353.	2.4	63
56	The effect of gastric inhibitory polypeptide on intestinal glucose absorption and intestinal motility in mice. Biochemical and Biophysical Research Communications, 2011, 404, 115-120.	2.1	27
57	GLP-1 receptor agonist attenuates endoplasmic reticulum stress-mediated β-cell damage in Akita mice. Journal of Diabetes Investigation, 2011, 2, 104-110.	2.4	16
58	Plasma gastric inhibitory polypeptide and glucagon-like peptide-1 levels after glucose loading are associated with different factors in Japanese subjects. Journal of Diabetes Investigation, 2011, 2, 193-199.	2.4	29
59	Beneficial Effects of Exendin-4 on Experimental Polyneuropathy in Diabetic Mice. Diabetes, 2011, 60, 2397-2406.	0.6	89
60	Effects of long-term dipeptidyl peptidase-IV inhibition on body composition and glucose tolerance in high fat diet-fed mice. Life Sciences, 2009, 84, 876-881.	4.3	11
61	Factors responsible for age-related elevation in fasting plasma glucose: a cross-sectional study in Japanese men. Metabolism: Clinical and Experimental, 2008, 57, 299-303.	3.4	11
62	GLP-1 receptor signaling protects pancreatic beta cells in intraportal islet transplant by inhibiting apoptosis. Biochemical and Biophysical Research Communications, 2008, 367, 793-798.	2.1	35
63	Inhibition of GIP signaling modulates adiponectin levels under high-fat diet in mice. Biochemical and Biophysical Research Communications, 2008, 376, 21-25.	2.1	58
64	Effect of corosolic acid on gluconeogenesis in rat liver. Diabetes Research and Clinical Practice, 2008, 80, 48-55.	2.8	37
65	Factors responsible for elevation of 1-h postchallenge plasma glucose levels in Japanese men. Diabetes Research and Clinical Practice, 2008, 81, 284-289.	2.8	13
66	A novel GIP receptor splice variant influences GIP sensitivity of pancreatic β-cells in obese mice. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E61-E68.	3.5	60
67	Genetic inactivation of GIP signaling reverses aging-associated insulin resistance through body composition changes. Biochemical and Biophysical Research Communications, 2007, 364, 175-180.	2.1	34
68	Gastric Inhibitory Polypeptide as an Endogenous Factor Promoting New Bone Formation after Food Ingestion. Molecular Endocrinology, 2006, 20, 1644-1651.	3.7	174
69	Noninvasive Evaluation of GIP Effects on \hat{l}^2 -Cell Mass Under High-Fat Diet. Frontiers in Endocrinology, 0, 13, .	3.5	2