Camilo Vieira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1782429/publications.pdf

Version: 2024-02-01

30	515	11	17
papers	citations	h-index	g-index
30	30	30	427
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Student ability and difficulties with transfer from a block-based programming language into other programming languages: a case study in Colombia. Computer Science Education, 2023, 33, 567-599.	3.7	7
2	Providing students with agency to self-scaffold in a computational science and engineering course. Journal of Computing in Higher Education, 2021, 33, 328-366.	6.1	7
3	Activity Worksheets for Teaching and Learning Data Visualization. IEEE Computer Graphics and Applications, 2021, 41, 25-36.	1.2	6
4	Professional Development in Computational Thinking for teachers in Colombia. , 2021, , .		0
5	Undergraduate Engineering Students' Types and Quality of Knowledge Used in Synthetic Modeling. Cognition and Instruction, 2020, 38, 503-537.	2.9	7
6	Flipping a Computational Modeling Class: Strategies to Engage Students and Foster Active Learning. , 2020, , .		2
7	Student Explanations in the Context of Computational Science and Engineering Education. Cognition and Instruction, 2019, 37, 201-231.	2.9	24
8	Characterizing the interplay of cognitive and metacognitive knowledge in computational modeling and simulation practices. Journal of Engineering Education, 2019, 108, 276-303.	3.0	18
9	Using Computational Methods to Analyze Educational Data. , 2019, , .		1
10	Effects of Self-explanations as Scaffolding Tool for Learning Computer Programming. , 2019, , .		1
11	Investigating the affordances of a CAD enabled learning environment for promoting integrated STEM learning. Computers and Education, 2019, 129, 122-142.	8.3	35
12	Characterizing Engineering Learners' Preferences for Active and Passive Learning Methods. IEEE Transactions on Education, 2018, 61, 46-54.	2.4	34
13	Integrating Computational Science Tools into a Thermodynamics Course. Journal of Science Education and Technology, 2018, 27, 322-333.	3.9	16
14	Addâ€on Preferential Groups (APG): Analyzing student preferences of teaching methods. Computer Applications in Engineering Education, 2018, 26, 1020-1032.	3.4	2
15	Visual learning analytics of educational data: A systematic literature review and research agenda. Computers and Education, 2018, 122, 119-135.	8.3	195
16	Students' experimentation strategies in design: Is process data enough?. Computer Applications in Engineering Education, 2018, 26, 1903-1914.	3.4	9
17	Affordances and challenges of computational tools for supporting modeling and simulation practices. Computer Applications in Engineering Education, 2017, 25, 352-375.	3.4	20
18	Writing In-Code Comments to Self-Explain in Computational Science and Engineering Education. ACM Transactions on Computing Education, 2017, 17, 1-21.	3.5	31

#	Article	IF	CITATIONS
19	Using pattern recognition techniques to analyze educational data., 2017,,.		3
20	Implementing an active learning platform to support student learning in a numerical analysis course. , 2017, , .		5
21	Using Learning Analytics to Characterize Student Experimentation Strategies in the Context of Engineering Design. Journal of Learning Analytics, 2016, 3, 291-317.	2.4	29
22	Exploring students' experimentation strategies in engineering design using an educational CAD tool. , 2016, , .		1
23	A case study of undergraduate engineering students' computational literacy and self-beliefs about computing in the context of authentic practices. Computers in Human Behavior, 2016, 61, 427-442.	8.5	36
24	Exploring Design Characteristics of Worked Examples to Support Programming and Algorithm Design. Journal of Computational Science Education, 2015, 6, 2-15.	0.3	15
25	Using backwards design process for the design and implementation of computer science (CS) principles: A case study of a colombian elementary and secondary teacher development program. , 2013, , .		3
26	An exploratory survey on the use of computation in undergraduate engineering education., 2013,,.		0
27	Materials Science Students' Perceptions and Usage Intentions of Computation. , 0, , .		2
28	In-code Comments as a Self-explanation Strategy for Computational Science Education. , 0, , .		4
29	Visualization: A Conduit for Collaborative Undergraduate Research Experiences. , 0, , .		1
30	Colombian Elementary Students' Performance and Perceptions of Computing Learning Activities with Scratch. , 0, , .		1