SÅ,awomir Dyjak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1782216/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transition metal impurities in carbon-based materials: Pitfalls, artifacts and deleterious effects. Carbon, 2020, 168, 748-845.	10.3	102
2	Thermite-driven melamine condensation to C _x N _y H _z graphitic ternary polymers: towards an instant, large-scale synthesis of g-C ₃ N ₄ . Journal of Materials Chemistry A, 2015, 3, 9621-9631.	10.3	58
3	Hierarchical, nanoporous graphenic carbon materials through an instant, self-sustaining magnesiothermic reduction. Carbon, 2016, 96, 937-946.	10.3	37
4	The influence of ball-milling time on the dehydrogenation properties of the NaAlH4–MgH2 composite. International Journal of Hydrogen Energy, 2015, 40, 4200-4206.	7.1	33
5	A simple method of synthesis and surface purification of titanium carbide powder. International Journal of Refractory Metals and Hard Materials, 2013, 38, 87-91.	3.8	32
6	Heterogeneous iron-containing carbon gels as catalysts for oxygen electroreduction: Multifunctional role of sulfur in the formation of efficient systems. Carbon, 2017, 116, 655-669.	10.3	31
7	Polyoxometalate/hydroquinone dual redox electrolyte for hybrid energy storage systems. Energy Storage Materials, 2019, 21, 427-438.	18.0	28
8	Fast and efficient combustion synthesis route to produce novel nanocarbons. Physica Status Solidi (B): Basic Research, 2012, 249, 2373-2377.	1.5	23
9	Fast combustion synthesis and characterization of YAG:Ce ³⁺ garnet nanopowders. Physica Status Solidi (B): Basic Research, 2013, 250, 2702-2708.	1.5	20
10	Carbon gel-derived Fe–N–C electrocatalysts for hydrogen-air polymer electrolyte fuel cells. Journal of Power Sources, 2021, 513, 230537.	7.8	17
11	Fe–N–C catalysts for oxygen electroreduction under external magnetic fields: Reduction of magnetic O2 to nonmagnetic H2O. Journal of Energy Chemistry, 2022, 64, 296-308.	12.9	17
12	Carbide-derived carbon obtained via bromination of titanium carbide: Comparative analysis with chlorination and hydrogen storage studies. Microporous and Mesoporous Materials, 2019, 273, 26-34.	4.4	15
13	Capacitance characteristics of carbon-based electrochemical capacitors exposed to heteropolytungstic acid electrolyte. Electrochimica Acta, 2018, 282, 533-543.	5.2	13
14	Selfâ€propagating highâ€ŧemperature fast reduction of magnesium oxalate to novel nanocarbons. Physica Status Solidi (B): Basic Research, 2016, 253, 2486-2491.	1.5	11
15	Origin of microporosity in chalcogen-doped carbon materials: The case of selenium-doped carbogels. Microporous and Mesoporous Materials, 2018, 272, 260-264.	4.4	9
16	Facile and fast combustion synthesis and characterization of novel carbon nanostructures. Physica Status Solidi (B): Basic Research, 2014, 251, 2563-2568.	1.5	8
17	Factors affecting performance of electrochemical capacitors operating in Keggin-type silicotungstic acid electrolyte. Applied Surface Science, 2020, 530, 147273.	6.1	8
18	Graphitic encapsulation of MgO and Fe3C nanoparticles in the reaction of iron pentacarbonyl with magnesium. Materials Characterization, 2013, 81, 97-104.	4.4	5

SÅ,AWOMIR DYJAK

#	Article	IF	CITATIONS
19	Pressurised-cell test stand with oscillating heating for investigation heat transfer phenomena in metal hydride beds. International Journal of Hydrogen Energy, 2016, 41, 16974-16983.	7.1	5
20	Analysis of the cytotoxicity of hierarchical nanoporous graphenic carbon against human glioblastoma grade IV cells. International Journal of Nanomedicine, 2017, Volume 12, 3839-3849.	6.7	5
21	Nitrogen-Doped Carbons Derived from Imidazole-Based Cross-Linked Porous Organic Polymers. Molecules, 2021, 26, 668.	3.8	5
22	Iodide Electrolyte-Based Hybrid Supercapacitor for Compact Photo-Rechargeable Energy Storage System Utilising Silicon Solar Cells. Energies, 2021, 14, 2708.	3.1	5
23	Conducting Polymerâ€Based Hybrid Electrochemical Capacitor Utilizing Potassium Iodide Redox Electrolyte with Controlled Selfâ€Discharge. ChemElectroChem, 2022, 9, .	3.4	4
24	Silver and Graphenic Carbon Nanostructures Differentially Influence the Morphology and Viability of Cardiac Progenitor Cells. Materials, 2020, 13, 2159.	2.9	3
25	Pyrolysis of Porous Organic Polymers under a Chlorine Atmosphere to Produce Heteroatom-Doped Microporous Carbons. Molecules, 2021, 26, 3656.	3.8	3
26	Keggin Type Silicotungstic Acid As Electrolyte for Liquid and Solid-State Electrochemical Capacitors Utilizing Biopolymer Membranes. ECS Meeting Abstracts, 2020, MA2020-01, 14-14.	0.0	0
27	Polyoxometalate/Hydroquinone Hybrid Redox Electrolyte for Electrochemical Energy Storage. ECS Meeting Abstracts, 2020, MA2020-01, 2815-2815.	0.0	0