
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1782143/publications.pdf Version: 2024-02-01

DENNY L MOODE

#	Article	IF	CITATIONS
1	SARS-CoV-2 Beta and Delta variants trigger Fc effector function with increased cross-reactivity. Cell Reports Medicine, 2022, 3, 100510.	6.5	51
2	T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature, 2022, 603, 488-492.	27.8	430
3	SARS-CoV-2 prolonged infection during advanced HIV disease evolves extensive immune escape. Cell Host and Microbe, 2022, 30, 154-162.e5.	11.0	153
4	Ad26.COV2.S breakthrough infections induce high titers of neutralizing antibodies against Omicron and other SARS-CoV-2 variants of concern. Cell Reports Medicine, 2022, 3, 100535.	6.5	31
5	Escape from recognition of SARS-CoV-2 variant spike epitopes but overall preservation of T cell immunity. Science Translational Medicine, 2022, 14, .	12.4	77
6	Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization. Nature, 2022, 602, 654-656.	27.8	928
7	The wondrous world of biology. Southern African Journal of Infectious Diseases, 2022, 37, 372.	0.5	0
8	Convalescent plasma in the treatment of moderate to severe COVID-19 pneumonia: a randomized controlled trial (PROTECT-Patient Trial). Scientific Reports, 2022, 12, 2552.	3.3	23
9	Single-Chain Variable Fragments of Broadly Neutralizing Antibodies Prevent HIV Cell-Cell Transmission. Journal of Virology, 2022, 96, jvi0193421.	3.4	4
10	The Impact of Evolving SARS-CoV-2 Mutations and Variants on COVID-19 Vaccines. MBio, 2022, 13, e0297921.	4.1	117
11	AstraZeneca COVID-19 vaccine induces robust broadly cross-reactive antibody responses in Malawian adults previously infected with SARS-CoV-2. BMC Medicine, 2022, 20, 128.	5.5	17
12	SARS-CoV-2 Omicron triggers cross-reactive neutralization and Fc effector functions in previously vaccinated, but not unvaccinated, individuals. Cell Host and Microbe, 2022, 30, 880-886.e4.	11.0	80
13	Omicron — Decoupling Infection from Severe Disease. New England Journal of Medicine, 2022, 386, 1361-1362.	27.0	7
14	Emergence and phenotypic characterization of the global SARS-CoV-2 C.1.2 lineage. Nature Communications, 2022, 13, 1976.	12.8	27
15	Complementary Roles of Antibody Heavy and Light Chain Somatic Hypermutation in Conferring Breadth and Potency to the HIV-1-Specific CAP256-VRC26 bNAb Lineage. Journal of Virology, 2022, 96, e0027022.	3.4	1
16	Omicron infection enhances Delta antibody immunity in vaccinated persons. Nature, 2022, 607, 356-359.	27.8	66
17	Leveraging on past investment in understanding the immunology of COVID-19 – the South African experience. South African Journal of Science, 2022, 118, .	0.7	1
18	Leveraging South African <scp>HIV</scp> research to define <scp>SARS oV</scp> â€2 immunity triggered by sequential variants of concern. Immunological Reviews, 2022, 310, 61-75.	6.0	6

PENNY L MOORE

#	Article	IF	CITATIONS
19	Shared N417-Dependent Epitope on the SARS-CoV-2 Omicron, Beta, and Delta Plus Variants. Journal of Virology, 2022, 96, .	3.4	7
20	Modifications to the HIV-1 SAAVI MVA-C vaccine improve in vitro expression and in vivo immunogenicity. Vaccine, 2021, 39, 463-468.	3.8	1
21	In Utero Human Cytomegalovirus Infection Is Associated With Increased Levels of Putatively Protective Maternal Antibodies in Nonprimary Infection: Evidence for Boosting but Not Protection. Clinical Infectious Diseases, 2021, 73, e981-e987.	5.8	12
22	SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nature Medicine, 2021, 27, 622-625.	30.7	984
23	Targeting Fc effector function in vaccine design. Expert Opinion on Therapeutic Targets, 2021, 25, 467-477.	3.4	17
24	Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant. New England Journal of Medicine, 2021, 384, 1885-1898.	27.0	1,077
25	Cross-Reactive Neutralizing Antibody Responses Elicited by SARS-CoV-2 501Y.V2 (B.1.351). New England Journal of Medicine, 2021, 384, 2161-2163.	27.0	111
26	Coordinated Fc-effector and neutralization functions in HIV-infected children define a window of opportunity for HIV vaccination. Aids, 2021, 35, 1895-1905.	2.2	4
27	Ultrapotent antibodies against diverse and highly transmissible SARS-CoV-2 variants. Science, 2021, 373,	12.6	174
28	Therapeutic effect of CT-P59 against SARS-CoV-2 South African variant. Biochemical and Biophysical Research Communications, 2021, 566, 135-140.	2.1	46
29	Safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 in people living with and without HIV in South Africa: an interim analysis of a randomised, double-blind, placebo-controlled, phase 1B/2A trial. Lancet HIV,the, 2021, 8, e568-e580.	4.7	124
30	HIV Broadly Neutralizing Antibodies Expressed as IgG3 Preserve Neutralization Potency and Show Improved Fc Effector Function. Frontiers in Immunology, 2021, 12, 733958.	4.8	14
31	Combinations of Single Chain Variable Fragments From HIV Broadly Neutralizing Antibodies Demonstrate High Potency and Breadth. Frontiers in Immunology, 2021, 12, 734110.	4.8	3
32	Rapid and Successful Implementation of a COVID-19 Convalescent Plasma Programme—The South African Experience. Viruses, 2021, 13, 2050.	3.3	5
33	Prior infection with SARS-CoV-2 boosts and broadens Ad26.COV2.S immunogenicity in a variant-dependent manner. Cell Host and Microbe, 2021, 29, 1611-1619.e5.	11.0	106
34	Assessment of an LSDV-Vectored Vaccine for Heterologous Prime-Boost Immunizations against HIV. Vaccines, 2021, 9, 1281.	4.4	5
35	ADCC-mediating non-neutralizing antibodies can exert immune pressure in early HIV-1 infection. PLoS Pathogens, 2021, 17, e1010046.	4.7	6
36	SARS-CoV-2 exposure in Malawian blood donors: an analysis of seroprevalence and variant dynamics between January 2020 and July 2021. BMC Medicine, 2021, 19, 303.	5.5	45

#	Article	IF	CITATIONS
37	Escape from recognition of SARS-CoV-2 Beta variant spike epitopes but overall preservation of T cell immunity Science Translational Medicine, 2021, , eabj6824.	12.4	11
38	Neutralization Breadth and Potency of Single-Chain Variable Fragments Derived from Broadly Neutralizing Antibodies Targeting Multiple Epitopes on the HIV-1 Envelope. Journal of Virology, 2020, 94, .	3.4	15
39	Antibody Isotype Switching as a Mechanism to Counter HIV Neutralization Escape. Cell Reports, 2020, 33, 108430.	6.4	16
40	Longitudinal analysis of subtype C envelope tropism for memory CD4+ T cell subsets over the first 3Âyears of untreated HIV-1 infection. Retrovirology, 2020, 17, 24.	2.0	2
41	Rapid Induction of Multifunctional Antibodies in Rabbits and Macaques by Clade C HIV-1 CAP257 Envelopes Circulating During Epitope-Specific Neutralization Breadth Development. Frontiers in Immunology, 2020, 11, 984.	4.8	9
42	Immunogenicity of HIV-1 Vaccines Expressing Chimeric Envelope Glycoproteins on the Surface of Pr55 Gag Virus-Like Particles. Vaccines, 2020, 8, 54.	4.4	11
43	Targeting the N332-supersite of the HIV-1 envelope for vaccine design. Expert Opinion on Therapeutic Targets, 2020, 24, 499-509.	3.4	10
44	Envelope characteristics in individuals who developed neutralizing antibodies targeting different epitopes in HIV-1 subtype C infection. Virology, 2020, 546, 1-12.	2.4	5
45	Effect of HIV Envelope Vaccination on the Subsequent Antibody Response to HIV Infection. MSphere, 2020, 5, .	2.9	3
46	Structure of Super-Potent Antibody CAP256-VRC26.25 in Complex with HIV-1 Envelope Reveals a Combined Mode of Trimer-Apex Recognition. Cell Reports, 2020, 31, 107488.	6.4	53
47	Modified Adenovirus Prime-Protein Boost Clade C HIV Vaccine Strategy Results in Reduced Viral DNA in Blood and Tissues Following Tier 2 SHIV Challenge. Frontiers in Immunology, 2020, 11, 626464.	4.8	4
48	Distinct Immunoglobulin Fc Glycosylation Patterns Are Associated with Disease Nonprogression and Broadly Neutralizing Antibody Responses in Children with HIV Infection. MSphere, 2020, 5, .	2.9	7
49	Assessing the safety and pharmacokinetics of the anti-HIV monoclonal antibody CAP256V2LS alone and in combination with VRC07-523LS and PGT121 in South African women: study protocol for the first-in-human CAPRISA 012B phase I clinical trial. BMJ Open, 2020, 10, e042247.	1.9	25
50	Rapid and Focused Maturation of a VRC01-Class HIV Broadly Neutralizing Antibody Lineage Involves Both Binding and Accommodation of the N276-Glycan. Immunity, 2019, 51, 141-154.e6.	14.3	71
51	Somatic hypermutation to counter a globally rare viral immunotype drove off-track antibodies in the CAP256-VRC26 HIV-1 V2-directed bNAb lineage. PLoS Pathogens, 2019, 15, e1008005.	4.7	6
52	Evidence for both Intermittent and Persistent Compartmentalization of HIV-1 in the Female Genital Tract. Journal of Virology, 2019, 93, .	3.4	9
53	Prime-Boost Immunizations with DNA, Modified Vaccinia Virus Ankara, and Protein-Based Vaccines Elicit Robust HIV-1 Tier 2 Neutralizing Antibodies against the CAP256 Superinfecting Virus. Journal of Virology, 2019, 93, .	3.4	32
54	Antibody-Dependent Cellular Cytotoxicity (ADCC)-Mediating Antibodies Constrain Neutralizing Antibody Escape Pathway. Frontiers in Immunology, 2019, 10, 2875.	4.8	20

#	Article	IF	CITATIONS
55	IgC3 enhances neutralization potency and Fc effector function of an HIV V2-specific broadly neutralizing antibody. PLoS Pathogens, 2019, 15, e1008064.	4.7	66
56	Advancing HIV Vaccine Research With Low-Cost High-Performance Computing Infrastructure: An Alternative Approach for Resource-Limited Settings. Bioinformatics and Biology Insights, 2019, 13, 117793221988234.	2.0	0
57	The antibody response in HIV-1-infected donors. Current Opinion in HIV and AIDS, 2019, 14, 233-239.	3.8	4
58	Positive Selection at Key Residues in the HIV Envelope Distinguishes Broad and Strain-Specific Plasma Neutralizing Antibodies. Journal of Virology, 2019, 93, .	3.4	13
59	V2-Directed Vaccine-like Antibodies from HIV-1 Infection Identify an Additional K169-Binding Light Chain Motif with Broad ADCC Activity. Cell Reports, 2018, 25, 3123-3135.e6.	6.4	23
60	The adjuvant AlhydroGel elicits higher antibody titres than AddaVax when combined with HIV-1 subtype C gp140 from CAP256. PLoS ONE, 2018, 13, e0208310.	2.5	22
61	High-Frequency, Functional HIV-Specific T-Follicular Helper and Regulatory Cells Are Present Within Germinal Centers in Children but Not Adults. Frontiers in Immunology, 2018, 9, 1975.	4.8	29
62	HIV Superinfection Drives De Novo Antibody Responses and Not Neutralization Breadth. Cell Host and Microbe, 2018, 24, 593-599.e3.	11.0	24
63	Sequencing HIV-neutralizing antibody exons and introns reveals detailed aspects of lineage maturation. Nature Communications, 2018, 9, 4136.	12.8	11
64	Common helical V1V2 conformations of HIV-1 Envelope expose the α4β7 binding site on intact virions. Nature Communications, 2018, 9, 4489.	12.8	24
65	Development of broadly neutralizing antibodies in HIV-1 infected elite neutralizers. Retrovirology, 2018, 15, 61.	2.0	90
66	The Neutralizing Antibody Response to the HIV-1 Env Protein. Current HIV Research, 2018, 16, 21-28.	0.5	24
67	HIV-1 Subtype C-Infected Children with Exceptional Neutralization Breadth Exhibit Polyclonal Responses Targeting Known Epitopes. Journal of Virology, 2018, 92, .	3.4	47
68	Case report: mechanisms of HIV elite control in two African women. BMC Infectious Diseases, 2018, 18, 54.	2.9	82
69	HIV-specific Fc effector function early in infection predicts the development of broadly neutralizing antibodies. PLoS Pathogens, 2018, 14, e1006987.	4.7	71
70	Phenotypic deficits in the HIV-1 envelope are associated with the maturation of a V2-directed broadly neutralizing antibody lineage. PLoS Pathogens, 2018, 14, e1006825.	4.7	11
71	Ontogenyâ€based immunogens for the induction of V2â€directed <scp>HIV</scp> broadly neutralizing antibodies. Immunological Reviews, 2017, 275, 217-229.	6.0	27
72	Size Doesn't Matter: Shorter Antibody Loops Can Infiltrate HIV's Env Apex Defenses. Immunity, 2017, 46, 762-764.	14.3	3

#	Article	IF	CITATIONS
73	Serum glycan-binding IgG antibodies in HIV-1 infection and during the development of broadly neutralizing responses. Aids, 2017, 31, 2199-2209.	2.2	13
74	Broadly neutralizing antibodies targeting the HIV-1 envelope V2 apex confer protection against a clade C SHIV challenge. Science Translational Medicine, 2017, 9, .	12.4	87
75	Cooperation between Strain-Specific and Broadly Neutralizing Responses Limited Viral Escape and Prolonged the Exposure of the Broadly Neutralizing Epitope. Journal of Virology, 2017, 91, .	3.4	35
76	Chinks in the armor of the HIV-1 Envelope glycan shield: Implications for immune escape from anti-glycan broadly neutralizing antibodies. Virology, 2017, 501, 12-24.	2.4	9
77	Structure and Recognition of a Novel HIV-1 gp120-gp41 Interface Antibody that Caused MPER Exposure through Viral Escape. PLoS Pathogens, 2017, 13, e1006074.	4.7	33
78	From Bench to Bedside: Lessons from HIVÂNatural History Cohort Studies. , 2017, , 137-152.		0
79	Broadly neutralizing antibody specificities detected in the genital tract of HIV-1 infected women. Aids, 2016, 30, 1005-1014.	2.2	18
80	HIV-1 Glycan Density Drives the Persistence of the Mannose Patch within an Infected Individual. Journal of Virology, 2016, 90, 11132-11144.	3.4	43
81	Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site. Journal of Virology, 2016, 90, 10220-10235.	3.4	32
82	Nonprogressing HIV-infected children share fundamental immunological features of nonpathogenic SIV infection. Science Translational Medicine, 2016, 8, 358ra125.	12.4	121
83	Optimal immunization cocktails can promote induction of broadly neutralizing Abs against highly mutable pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7039-E7048.	7.1	53
84	Approaches to the induction of HIV broadly neutralizing antibodies. Current Opinion in HIV and AIDS, 2016, 11, 569-575.	3.8	15
85	Structures of HIV-1 Env V1V2 with broadly neutralizing antibodies reveal commonalities that enable vaccine design. Nature Structural and Molecular Biology, 2016, 23, 81-90.	8.2	162
86	New Member of the V1V2-Directed CAP256-VRC26 Lineage That Shows Increased Breadth and Exceptional Potency. Journal of Virology, 2016, 90, 76-91.	3.4	205
87	Features of Recently Transmitted HIV-1 Clade C Viruses that Impact Antibody Recognition: Implications for Active and Passive Immunization. PLoS Pathogens, 2016, 12, e1005742.	4.7	81
88	HIV broadly neutralizing antibody targets. Current Opinion in HIV and AIDS, 2015, 10, 135-143.	3.8	110
89	South African HIV-1 subtype C transmitted variants with a specific V2 motif show higher dependence on α4β7 for replication. Retrovirology, 2015, 12, 54.	2.0	19
90	Virological features associated with the development of broadly neutralizing antibodies to HIV-1. Trends in Microbiology, 2015, 23, 204-211.	7.7	77

#	Article	IF	CITATIONS
91	Ability To Develop Broadly Neutralizing HIV-1 Antibodies Is Not Restricted by the Germline Ig Gene Repertoire. Journal of Immunology, 2015, 194, 4371-4378.	0.8	85
92	Viral variants that initiate and drive maturation of V1V2-directed HIV-1 broadly neutralizing antibodies. Nature Medicine, 2015, 21, 1332-1336.	30.7	215
93	Differences in HIV Type 1 Neutralization Breadth in 2 Geographically Distinct Cohorts in Africa. Journal of Infectious Diseases, 2015, 211, 1461-1466.	4.0	7
94	Viral Escape Pathways from Broadly Neutralising Antibodies Targeting the HIV Envelope Cleavage Site Enhance MPER Mediated Neutralisation. AIDS Research and Human Retroviruses, 2014, 30, A20-A21.	1.1	1
95	The Sequence of the α4β7-binding Motif on Gp120 of Transmitted/Founder Viruses Contributes to the Dependence on the Integrin for HIV Infection. AIDS Research and Human Retroviruses, 2014, 30, A56-A56.	1.1	1
96	Development of broadly neutralizing antibodies from autologous neutralizing antibody responses in HIV infection. Current Opinion in HIV and AIDS, 2014, 9, 210-216.	3.8	71
97	Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature, 2014, 509, 55-62.	27.8	681
98	Role of HIV Glycans in Transmission and Immune Escape. , 2014, , 85-115.		0
99	Comparison of Viral Env Proteins from Acute and Chronic Infections with Subtype C Human Immunodeficiency Virus Type 1 Identifies Differences in Glycosylation and CCR5 Utilization and Suggests a New Strategy for Immunogen Design. Journal of Virology, 2013, 87, 7218-7233.	3.4	119
100	Identification of broadly neutralizing antibody epitopes in the HIV-1 envelope glycoprotein using evolutionary models. Virology Journal, 2013, 10, 347.	3.4	14
101	Mechanisms of HIV-1 subtype C resistance to GRFT, CV-N and SVN. Virology, 2013, 446, 66-76.	2.4	25
102	Viral Escape from HIV-1 Neutralizing Antibodies Drives Increased Plasma Neutralization Breadth through Sequential Recognition of Multiple Epitopes and Immunotypes. PLoS Pathogens, 2013, 9, e1003738.	4.7	190
103	Multiple Pathways of Escape from HIV Broadly Cross-Neutralizing V2-Dependent Antibodies. Journal of Virology, 2013, 87, 4882-4894.	3.4	65
104	UCLA1, a Synthetic Derivative of a gp120 RNA Aptamer, Inhibits Entry of Human Immunodeficiency Virus Type 1 Subtype C. Journal of Virology, 2012, 86, 4989-4999.	3.4	38
105	Evolution of an HIV glycan–dependent broadly neutralizing antibody epitope through immune escape. Nature Medicine, 2012, 18, 1688-1692.	30.7	273
106	The Neutralization Breadth of HIV-1 Develops Incrementally over Four Years and Is Associated with CD4 ⁺ T Cell Decline and High Viral Load during Acute Infection. Journal of Virology, 2011, 85, 4828-4840.	3.4	441
107	Potent and Broad Neutralization of HIV-1 Subtype C by Plasma Antibodies Targeting a Quaternary Epitope Including Residues in the V2 Loop. Journal of Virology, 2011, 85, 3128-3141.	3.4	151
108	Polyclonal B Cell Responses to Conserved Neutralization Epitopes in a Subset of HIV-1-Infected Individuals. Journal of Virology, 2011, 85, 11502-11519.	3.4	168

#	Article	IF	CITATIONS
109	Binding of the Mannose-Specific Lectin, Griffithsin, to HIV-1 gp120 Exposes the CD4-Binding Site. Journal of Virology, 2011, 85, 9039-9050.	3.4	49
110	Isolation of a Monoclonal Antibody That Targets the Alpha-2 Helix of gp120 and Represents the Initial Autologous Neutralizing-Antibody Response in an HIV-1 Subtype C-Infected Individual. Journal of Virology, 2011, 85, 7719-7729.	3.4	54
111	Mannose-rich glycosylation patterns on HIV-1 subtype C gp120 and sensitivity to the lectins, Griffithsin, Cyanovirin-N and Scytovirin. Virology, 2010, 402, 187-196.	2.4	95
112	Antibody Specificities Associated with Neutralization Breadth in Plasma from Human Immunodeficiency Virus Type 1 Subtype C-Infected Blood Donors. Journal of Virology, 2009, 83, 8925-8937.	3.4	170
113	Limited Neutralizing Antibody Specificities Drive Neutralization Escape in Early HIV-1 Subtype C Infection. PLoS Pathogens, 2009, 5, e1000598.	4.7	213
114	Broad Neutralization of Human Immunodeficiency Virus Type 1 Mediated by Plasma Antibodies against the gp41 Membrane Proximal External Region. Journal of Virology, 2009, 83, 11265-11274.	3.4	93
115	High titer HIV-1 V3-specific antibodies with broad reactivity but low neutralizing potency in acute infection and following vaccination. Virology, 2009, 387, 414-426.	2.4	86
116	Functional and genetic analysis of coreceptor usage by dualtropic HIV-1 subtype C isolates. Virology, 2009, 393, 56-67.	2.4	14
117	Specificity of the autologous neutralizing antibody response. Current Opinion in HIV and AIDS, 2009, 4, 358-363.	3.8	59
118	Relationship of HIV-1 and SIV envelope glycoprotein trimer occupation and neutralization. Virology, 2008, 377, 364-378.	2.4	45
119	Extensive purifying selection acting on synonymous sites in HIV-1 Group M sequences. Virology Journal, 2008, 5, 160.	3.4	27
120	The C3-V4 Region Is a Major Target of Autologous Neutralizing Antibodies in Human Immunodeficiency Virus Type 1 Subtype C Infection. Journal of Virology, 2008, 82, 1860-1869.	3.4	142
121	4E10-Resistant Variants in a Human Immunodeficiency Virus Type 1 Subtype C-Infected Individual with an Anti-Membrane-Proximal External Region-Neutralizing Antibody Response. Journal of Virology, 2008, 82, 2367-2375.	3.4	37
122	N-Linked Glycan Modifications in gp120 of Human Immunodeficiency Virus Type 1 Subtype C Render Partial Sensitivity to 2G12 Antibody Neutralization. Journal of Virology, 2007, 81, 10769-10776.	3.4	42
123	A comparative immunogenicity study of HIV-1 virus-like particles bearing various forms of envelope proteins, particles bearing no envelope and soluble monomeric gp120. Virology, 2007, 366, 245-262.	2.4	124
124	Genetic characteristics of HIV-1 subtype C envelopes inducing cross-neutralizing antibodies. Virology, 2007, 368, 172-181.	2.4	45
125	Entry inhibition of HIV-1 subtype C isolates. , 2007, , 119-131.		1
126	Inhibition of HIV Env binding to cellular receptors by monoclonal antibody 2G12 as probed by Fc-tagged gp120. Retrovirology, 2006, 3, 39.	2.0	26

#	Article	IF	CITATIONS
127	Characterizing anti-HIV monoclonal antibodies and immune sera by defining the mechanism of neutralization. Human Antibodies, 2006, 14, 101-113.	1.5	48
128	Nature of Nonfunctional Envelope Proteins on the Surface of Human Immunodeficiency Virus Type 1. Journal of Virology, 2006, 80, 2515-2528.	3.4	309
129	Genotypic and Phenotypic Characterization of Viral Isolates from HIV-1 Subtype C-Infected Children with Slow and Rapid Disease Progression. AIDS Research and Human Retroviruses, 2006, 22, 458-465.	1.1	51
130	In VitroGeneration of HIV Type 1 Subtype C Isolates Resistant to Enfuvirtide. AIDS Research and Human Retroviruses, 2005, 21, 776-783.	1.1	14
131	Characterizing anti-HIV monoclonal antibodies and immune sera by defining the mechanism of neutralization. Human Antibodies, 2005, 14, 101-13.	1.5	51
132	Predicted genotypic resistance to the novel entry inhibitor, BMS-378806, among HIV-1 isolates of subtypes A to G. Aids, 2004, 18, 2327-2330.	2.2	14
133	Structure of Antibody CAP256-VRC26.25 in Complex with HIV-1 Envelope Reveals a Combined Mode of Trimer-Apex Recognition. SSRN Electronic Journal, 0, , .	0.4	1
134	Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization. Nature, 0, , .	27.8	104
135	HIV Coinfection Provides Insights for the Design of Vaccine Cocktails to Elicit Broadly Neutralizing Antibodies. Journal of Virology, 0, , .	3.4	0
136	Augmenting glycosylationâ€directed folding pathways enhances the fidelity of HIV Env immunogen production in plants. Biotechnology and Bioengineering, 0, , .	3.3	5