List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1781863/publications.pdf Version: 2024-02-01



7HAOFFILIU

| #  | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Integrin α <sub>v</sub> β <sub>3</sub> â€targeted cancer therapy. Drug Development Research, 2008, 69,<br>329-339.                                                                                                                                              | 2.9  | 267       |
| 2  | NaGdF <sub>4</sub> Nanoparticle-Based Molecular Probes for Magnetic Resonance Imaging of<br>Intraperitoneal Tumor Xenografts <i>in Vivo</i> . ACS Nano, 2013, 7, 330-338.                                                                                       | 14.6 | 207       |
| 3  | Molybdenum-based nanoclusters act as antioxidants and ameliorate acute kidney injury in mice. Nature<br>Communications, 2018, 9, 5421.                                                                                                                          | 12.8 | 184       |
| 4  | Inhibiting Metastasis and Preventing Tumor Relapse by Triggering Host Immunity with Tumor-Targeted<br>Photodynamic Therapy Using Photosensitizer-Loaded Functional Nanographenes. ACS Nano, 2017, 11,<br>10147-10158.                                           | 14.6 | 164       |
| 5  | Ceria Nanoparticles Meet Hepatic Ischemiaâ€Reperfusion Injury: The Perfect Imperfection. Advanced<br>Materials, 2019, 31, e1902956.                                                                                                                             | 21.0 | 150       |
| 6  | Synergistic enzymatic and bioorthogonal reactions for selective prodrug activation in living systems.<br>Nature Communications, 2018, 9, 5032.                                                                                                                  | 12.8 | 141       |
| 7  | Improving Tumor-Targeting Capability and Pharmacokinetics of <sup>99m</sup> Tc-Labeled Cyclic RGD<br>Dimers with PEG <sub>4</sub> Linkers. Molecular Pharmaceutics, 2009, 6, 231-245.                                                                           | 4.6  | 136       |
| 8  | 68Ga-labeled cyclic RGD dimers with Gly3 and PEG4 linkers: promising agents for tumor integrin αvβ3 PET<br>imaging. European Journal of Nuclear Medicine and Molecular Imaging, 2009, 36, 947-957.                                                              | 6.4  | 132       |
| 9  | Nanoparticle-mediated local depletion of tumour-associated platelets disrupts vascular barriers and augments drug accumulation in tumours. Nature Biomedical Engineering, 2017, 1, 667-679.                                                                     | 22.5 | 132       |
| 10 | <sup>18</sup> F, <sup>64</sup> Cu, and <sup>68</sup> Ga Labeled RGD-Bombesin Heterodimeric Peptides<br>for PET Imaging of Breast Cancer. Bioconjugate Chemistry, 2009, 20, 1016-1025.                                                                           | 3.6  | 131       |
| 11 | 18F-Labeled Galacto and PEGylated RGD Dimers for PET Imaging of αvβ3 Integrin Expression. Molecular<br>Imaging and Biology, 2010, 12, 530-538.                                                                                                                  | 2.6  | 131       |
| 12 | Improving Tumor Uptake and Pharmacokinetics of64Cu-Labeled Cyclic RGD Peptide Dimers with Gly3and<br>PEG4Linkers. Bioconjugate Chemistry, 2009, 20, 750-759.                                                                                                    | 3.6  | 123       |
| 13 | Small-Animal PET of Tumors with <sup>64</sup> Cu-Labeled RGD-Bombesin Heterodimer. Journal of<br>Nuclear Medicine, 2009, 50, 1168-1177.                                                                                                                         | 5.0  | 118       |
| 14 | Improving Tumor Uptake and Excretion Kinetics of <sup>99</sup> <sup>m</sup> Tc-Labeled Cyclic<br>Arginine-Glycine-Aspartic (RGD) Dimers with Triglycine Linkers. Journal of Medicinal Chemistry, 2008,<br>51, 7980-7990.                                        | 6.4  | 115       |
| 15 | Noninvasive imaging of tumor integrin expression using 18F-labeled RGD dimer peptide with PEG4<br>linkers. European Journal of Nuclear Medicine and Molecular Imaging, 2009, 36, 1296-1307.                                                                     | 6.4  | 115       |
| 16 | 68Ga-labeled NOTA-RGD-BBN peptide for dual integrin and GRPR-targeted tumor imaging. European<br>Journal of Nuclear Medicine and Molecular Imaging, 2009, 36, 1483-1494.                                                                                        | 6.4  | 114       |
| 17 | Dual Integrin and Gastrin-Releasing Peptide Receptor Targeted Tumor Imaging Using<br><sup>18</sup> F-labeled PEGylated RGD-Bombesin Heterodimer<br><sup>18</sup> F-FB-PEG <sub>3</sub> -Glu-RGD-BBN. Journal of Medicinal Chemistry, 2009, <u>5</u> 2, 425-432. | 6.4  | 113       |
| 18 | <sup>99m</sup> Tc-3PRGD2 for Integrin Receptor Imaging of Lung Cancer: A Multicenter Study. Journal of Nuclear Medicine, 2012, 53, 716-722.                                                                                                                     | 5.0  | 112       |

| #  | Article                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Enhanced Anti-Tumor Efficacy through a Combination of Integrin αvβ6-Targeted Photodynamic Therapy<br>and Immune Checkpoint Inhibition. Theranostics, 2016, 6, 627-637.                                                                                     | 10.0 | 92        |
| 20 | Noninvasive Imaging of CD206-Positive M2 Macrophages as an Early Biomarker for Post-Chemotherapy<br>Tumor Relapse and Lymph Node Metastasis. Theranostics, 2017, 7, 4276-4288.                                                                             | 10.0 | 85        |
| 21 | Inhibition of tumor growth and metastasis by photoimmunotherapy targeting tumor-associated macrophage in a sorafenib-resistant tumor model. Biomaterials, 2016, 84, 1-12.                                                                                  | 11.4 | 84        |
| 22 | Integrin αvβ3-Targeted Radioimmunotherapy of Glioblastoma Multiforme. Clinical Cancer Research,<br>2008, 14, 7330-7339.                                                                                                                                    | 7.0  | 79        |
| 23 | A Novel Type of Dual-Modality Molecular Probe for MR and Nuclear Imaging of Tumor: Preparation,<br>Characterization and in Vivo Application. Molecular Pharmaceutics, 2009, 6, 1074-1082.                                                                  | 4.6  | 79        |
| 24 | The deubiquitylase OTUD3 stabilizes GRP78 and promotes lung tumorigenesis. Nature Communications, 2019, 10, 2914.                                                                                                                                          | 12.8 | 73        |
| 25 | Blood Clearance Kinetics, Biodistribution, and Radiation Dosimetry of a Kit-Formulated Integrin<br>αvβ3-Selective Radiotracer 99mTc-3PRGD2 in Non-Human Primates. Molecular Imaging and Biology, 2011, 13,<br>730-736.                                     | 2.6  | 69        |
| 26 | Enhancing Anti-PD-1/PD-L1 Immune Checkpoint Inhibitory Cancer Therapy by CD276-Targeted<br>Photodynamic Ablation of Tumor Cells and Tumor Vasculature. Molecular Pharmaceutics, 2019, 16,<br>339-348.                                                      | 4.6  | 66        |
| 27 | 99mTc-Labeled Cyclic RGDfK Dimer:Â Initial Evaluation for SPECT Imaging of Glioma Integrin<br>αvβ3Expression. Bioconjugate Chemistry, 2006, 17, 1069-1076.                                                                                                 | 3.6  | 65        |
| 28 | Molecular Imaging of Tumor-Infiltrating Macrophages in a Preclinical Mouse Model of Breast Cancer.<br>Theranostics, 2015, 5, 597-608.                                                                                                                      | 10.0 | 61        |
| 29 | Tumor Uptake of the RGD Dimeric Probe <sup>99m</sup> Tc-G <sub>3</sub> -2P <sub>4</sub> -RGD2 is<br>Correlated with Integrin α <sub>v</sub> β <sub>3</sub> Expressed on both Tumor Cells and<br>Neovasculature. Bioconjugate Chemistry, 2010, 21, 548-555. | 3.6  | 59        |
| 30 | Noninvasive <i>De novo</i> Imaging of Human Embryonic Stem Cell–Derived Teratoma Formation.<br>Cancer Research, 2009, 69, 2709-2713.                                                                                                                       | 0.9  | 57        |
| 31 | <sup>99m</sup> Tc-Labeled RGD-BBN Peptide for Small-Animal SPECT/CT of Lung Carcinoma. Molecular<br>Pharmaceutics, 2012, 9, 1409-1417.                                                                                                                     | 4.6  | 56        |
| 32 | <sup>68</sup> Ga-PRGD2 PET/CT in the Evaluation of Glioma: A Prospective Study. Molecular<br>Pharmaceutics, 2014, 11, 3923-3929.                                                                                                                           | 4.6  | 51        |
| 33 | Integrin α <sub>v</sub> β <sub>6</sub> –Targeted SPECT Imaging for Pancreatic Cancer Detection. Journal<br>of Nuclear Medicine, 2014, 55, 989-994.                                                                                                         | 5.0  | 50        |
| 34 | Linker Effects on Biological Properties of 111In-Labeled DTPA Conjugates of a Cyclic RGDfK Dimer.<br>Bioconjugate Chemistry, 2008, 19, 201-210.                                                                                                            | 3.6  | 47        |
| 35 | HOXB13 networking with ABCG1/EZH2/Slug mediates metastasis and confers resistance to cisplatin in lung adenocarcinoma patients. Theranostics, 2019, 9, 2084-2099.                                                                                          | 10.0 | 45        |
| 36 | <sup>99m</sup> Tc-Labeled Bombesin(7â^'14)NH <sub>2</sub> with Favorable Properties for SPECT<br>Imaging of Colon Cancer. Bioconjugate Chemistry, 2008, 19, 1170-1178.                                                                                     | 3.6  | 44        |

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Development of RGD-Based Radiotracers for Tumor Imaging and Therapy: Translating from Bench to<br>Bedside. Current Molecular Medicine, 2013, 13, 1487-1505.                                                           | 1.3  | 41        |
| 38 | Integrin Targeted Delivery of Radiotherapeutics. Theranostics, 2011, 1, 201-210.                                                                                                                                      | 10.0 | 39        |
| 39 | <sup>177</sup> Lu-Labeled Antibodies for EGFR-Targeted SPECT/CT Imaging and Radioimmunotherapy in a<br>Preclinical Head and Neck Carcinoma Model. Molecular Pharmaceutics, 2014, 11, 800-807.                         | 4.6  | 38        |
| 40 | A near-infrared phthalocyanine dye-labeled agent for integrin αvβ6-targeted theranostics of pancreatic cancer. Biomaterials, 2015, 53, 229-238.                                                                       | 11.4 | 38        |
| 41 | Two <sup>90</sup> Y-Labeled Multimeric RGD Peptides RGD4 and 3PRGD2 for Integrin Targeted Radionuclide Therapy. Molecular Pharmaceutics, 2011, 8, 591-599.                                                            | 4.6  | 36        |
| 42 | Integrin Imaging with <sup>99m</sup> Tc-3PRGD2 SPECT/CT Shows High Specificity in the Diagnosis of<br>Lymph Node Metastasis from Non–Small Cell Lung Cancer. Radiology, 2016, 281, 958-966.                           | 7.3  | 34        |
| 43 | Epidermal Growth Factor Receptor–Targeted Radioimmunotherapy of Human Head and Neck Cancer<br>Xenografts Using 90Y-Labeled Fully Human Antibody Panitumumab. Molecular Cancer Therapeutics,<br>2010, 9, 2297-2308.    | 4.1  | 31        |
| 44 | Nuclear imaging-guided PD-L1 blockade therapy increases effectiveness of cancer immunotherapy. ,<br>2020, 8, e001156.                                                                                                 |      | 31        |
| 45 | Optical Imaging of Integrin α <sub>v</sub> β <sub>3</sub> Expression with Near-Infrared Fluorescent RGD<br>Dimer with Tetra(ethylene glycol) Linkers. Molecular Imaging, 2010, 9, 7290.2009.00032.                    | 1.4  | 28        |
| 46 | PET Imaging of Neovascularization with <sup>68</sup> Ga-3PRGD <sub>2</sub> for Assessing Tumor<br>Early Response to Endostar Antiangiogenic Therapy. Molecular Pharmaceutics, 2014, 11, 3915-3922.                    | 4.6  | 27        |
| 47 | Small-Animal SPECT/CT of the Progression and Recovery of Rat Liver Fibrosis by Using an Integrin<br>α <sub>v</sub> β <sub>3</sub> –targeting Radiotracer. Radiology, 2016, 279, 502-512.                              | 7.3  | 26        |
| 48 | Anti-tumor Effect of Integrin Targeted <sup>177</sup> Lu-3PRGD <sub>2</sub> and Combined Therapy<br>with Endostar. Theranostics, 2014, 4, 256-266.                                                                    | 10.0 | 25        |
| 49 | Clinical Translation of a <sup>68</sup> Ga-Labeled Integrin α <sub>v</sub> β <sub>6</sub> –Targeting<br>Cyclic Radiotracer for PET Imaging of Pancreatic Cancer. Journal of Nuclear Medicine, 2020, 61,<br>1461-1467. | 5.0  | 25        |
| 50 | Dual-Targeted Molecular Probes for Cancer Imaging. Current Pharmaceutical Biotechnology, 2010, 11,<br>610-619.                                                                                                        | 1.6  | 25        |
| 51 | Specific Targeting of Human Integrin αvβ3 with 111In-Labeled Abegrin™ in Nude Mouse Models. Molecular<br>Imaging and Biology, 2011, 13, 112-120.                                                                      | 2.6  | 24        |
| 52 | SPECT/NIRF Dual Modality Imaging for Detection of Intraperitoneal Colon Tumor with an Avidin/Biotin<br>Pretargeting System. Scientific Reports, 2016, 6, 18905.                                                       | 3.3  | 24        |
| 53 | Radioligand saturation binding for quantitative analysis of ligand-receptor interactions. Biophysics<br>Reports, 2015, 1, 148-155.                                                                                    | 0.8  | 22        |
| 54 | <sup>68</sup> Ga-Labeled 3PRGD <sub>2</sub> for Dual PET and Cerenkov Luminescence Imaging of<br>Orthotopic Human Glioblastoma. Bioconjugate Chemistry, 2015, 26, 1054-1060.                                          | 3.6  | 22        |

| #  | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | ICAM-1 orchestrates the abscopal effect of tumor radiotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .                                                                                              | 7.1  | 22        |
| 56 | Optical imaging of integrin alphavbeta3 expression with near-infrared fluorescent RGD dimer with tetra(ethylene glycol) linkers. Molecular Imaging, 2010, 9, 21-9.                                                                                        | 1.4  | 22        |
| 57 | <i>In-Vitro</i> Internalization and <i>In-Vivo</i> Tumor Uptake of Anti-EGFR Monoclonal Antibody LA22<br>in A549 Lung Cancer Cells and Animal Model. Cancer Biotherapy and Radiopharmaceuticals, 2009, 24,<br>15-24.                                      | 1.0  | 21        |
| 58 | Dual-Modality Monitoring of Tumor Response to Cyclophosphamide Therapy in Mice with<br>Bioluminescence Imaging and Small-Animal Positron Emission Tomography. Molecular Imaging, 2011, 10,<br>7290.2010.00041.                                            | 1.4  | 21        |
| 59 | <sup>99m</sup> Tc-Labeled Dimeric Octreotide Peptide: A Radiotracer with High Tumor Uptake for<br>Single-Photon Emission Computed Tomography Imaging of Somatostatin Receptor Subtype 2-Positive<br>Tumors. Molecular Pharmaceutics, 2013, 10, 2925-2933. | 4.6  | 20        |
| 60 | Molecular imaging of diabetes and diabetic complications: Beyond pancreatic β-cell targeting. Advanced<br>Drug Delivery Reviews, 2019, 139, 32-50.                                                                                                        | 13.7 | 20        |
| 61 | Radioimmunotherapy of Human Colon Cancer Xenografts with <sup>131</sup> I-Labeled Anti-CEA<br>Monoclonal Antibody. Bioconjugate Chemistry, 2010, 21, 314-318.                                                                                             | 3.6  | 19        |
| 62 | Early Assessment of Tumor Response to Gefitinib Treatment by Noninvasive Optical Imaging of Tumor<br>Vascular Endothelial Growth Factor Expression in Animal Models. Journal of Nuclear Medicine, 2014,<br>55, 818-823.                                   | 5.0  | 19        |
| 63 | Potential therapeutic radiotracers: preparation, biodistribution and metabolic characteristics of 177Lu-labeled cyclic RGDfK dimer. Amino Acids, 2010, 39, 111-120.                                                                                       | 2.7  | 18        |
| 64 | Phage display peptide probes for imaging early response to bevacizumab treatment. Amino Acids, 2011, 41, 1103-1112.                                                                                                                                       | 2.7  | 17        |
| 65 | Molecular PET/CT Profiling of ACE2 Expression In Vivo: Implications for Infection and Outcome from SARS oVâ€2. Advanced Science, 2021, 8, e2100965.                                                                                                       | 11.2 | 17        |
| 66 | Molecular imaging of integrin αvβ6 expression in living subjects. American Journal of Nuclear Medicine<br>and Molecular Imaging, 2014, 4, 333-45.                                                                                                         | 1.0  | 17        |
| 67 | Molecular Imaging Reveals Trastuzumab-Induced Epidermal Growth Factor Receptor Downregulation<br>In Vivo. Journal of Nuclear Medicine, 2014, 55, 1002-1007.                                                                                               | 5.0  | 16        |
| 68 | Chemotherapy-Induced Macrophage Infiltration into Tumors Enhances Nanographene-Based<br>Photodynamic Therapy. Cancer Research, 2017, 77, 6021-6032.                                                                                                       | 0.9  | 16        |
| 69 | Noninvasive small-animal imaging of galectin-1 upregulation for predicting tumor resistance to radiotherapy. Biomaterials, 2018, 158, 1-9.                                                                                                                | 11.4 | 15        |
| 70 | Evaluation of 188Re-MAG2-RGD-bombesin for potential prostate cancer therapy. Nuclear Medicine and<br>Biology, 2013, 40, 182-189.                                                                                                                          | 0.6  | 14        |
| 71 | Small-animal SPECT/CT imaging of cancer xenografts and pulmonary fibrosis using a 99mTc-labeled<br>integrin αvβ6-targeting cyclic peptide with improved in vivo stability. Biophysics Reports, 2018, 4, 254-264.                                          | 0.8  | 14        |
| 72 | Noninvasive PET tracking of post-transplant gut microbiota in living mice. European Journal of<br>Nuclear Medicine and Molecular Imaging, 2020, 47, 991-1002.                                                                                             | 6.4  | 14        |

| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Serial in Vivo Imaging Using a Fluorescence Probe Allows Identification of Tumor Early Response to<br>Cetuximab Immunotherapy. Molecular Pharmaceutics, 2015, 12, 10-17.                                                                                       | 4.6 | 12        |
| 74 | PET Tracers Based on 86Y. Current Radiopharmaceuticals, 2011, 4, 122-130.                                                                                                                                                                                      | 0.8 | 12        |
| 75 | Inhibition of human tumor xenograft growth in nude mice by a conjugate of monoclonal antibody<br>LA22 to epidermal growth factor receptor with anti-tumor antibiotics mitomycin C. Biochemical and<br>Biophysical Research Communications, 2006, 349, 816-824. | 2.1 | 11        |
| 76 | Longitudinal monitoring of tumor antiangiogenic therapy with near-infrared fluorophore-labeled<br>agents targeted to integrin αvβ3 and vascular endothelial growth factor. European Journal of Nuclear<br>Medicine and Molecular Imaging, 2014, 41, 1428-1439. | 6.4 | 11        |
| 77 | Evaluation of 64Cu radiolabeled anti-hPD-L1 Nb6 for positron emission tomography imaging in lung cancer tumor mice model. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126915.                                                                        | 2.2 | 11        |
| 78 | Metabolic radiolabeling and in vivo PET imaging of cytotoxic T lymphocytes to guide combination adoptive cell transfer cancer therapy. Journal of Nanobiotechnology, 2021, 19, 175.                                                                            | 9.1 | 10        |
| 79 | Phage Display Applications for Molecular Imaging. Current Pharmaceutical Biotechnology, 2010, 11, 603-609.                                                                                                                                                     | 1.6 | 10        |
| 80 | Molecular Imaging of Post-Src Inhibition Tumor Signatures for Guiding Dasatinib Combination Therapy. Journal of Nuclear Medicine, 2016, 57, 321-326.                                                                                                           | 5.0 | 8         |
| 81 | Noninvasive Detection of Human-Induced Pluripotent Stem Cell (hiPSC)-Derived Teratoma with an Integrin-Targeting Agent 99mTc-3PRGD2. Molecular Imaging and Biology, 2013, 15, 58-67.                                                                           | 2.6 | 7         |
| 82 | A self-triggered radioligand therapy agent for fluorescence imaging of the treatment response in<br>prostate cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 2693-2704.                                                          | 6.4 | 7         |
| 83 | <sup>99m</sup> Tc-Glu-c(RGDyK)-Bombesin SPECT Can Reduce Unnecessary Biopsy of Masses That Are<br>BI-RADS Category 4 on Ultrasonography. Journal of Nuclear Medicine, 2016, 57, 1196-1200.                                                                     | 5.0 | 6         |
| 84 | Radiolabeled novel mAb 4G1 for immunoSPECT imaging of EGFRvIII expression in preclinical glioblastoma xenografts. Oncotarget, 2017, 8, 6364-6375.                                                                                                              | 1.8 | 6         |
| 85 | In vivo gamma imaging of the secondary tumors of transplanted human fetal striatum neural stem cells-derived primary tumor cells. NeuroReport, 2008, 19, 1009-1014.                                                                                            | 1.2 | 5         |
| 86 | Galectin expression detected by 68Ga-galectracer PET as a predictive biomarker of radiotherapy resistance. European Journal of Nuclear Medicine and Molecular Imaging, 2022, , 1.                                                                              | 6.4 | 5         |
| 87 | Technetium 99m–Labeled VQ Peptide: A New Imaging Agent for the Early Detection of Tumors or<br>Premalignancies. Molecular Imaging, 2013, 12, 7290.2012.00047.                                                                                                  | 1.4 | 2         |
| 88 | MicroPET Imaging of Breast Cancer with a Dual-Targeted Molecular Probe<br><sup>68</sup> Ga-RGD-BBN. Sheng Wu Wu Li Hsueh Bao, 2011, 27, 335-344.                                                                                                               | 0.1 | 2         |
| 89 | JFK Is a Hypoxia-Inducible Gene That Functions to Promote Breast Carcinogenesis. Frontiers in Cell and Developmental Biology, 2021, 9, 686737.                                                                                                                 | 3.7 | 1         |
|    |                                                                                                                                                                                                                                                                |     |           |

90 Editorial (Thematic Issue: Molecular Image-Guided Cancer Treatment: Moving Towards Personalized) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

| #  | Article                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | RGD-Based Molecular Probes for Integrin $\hat{I}\pm$ v $\hat{I}^23$ Imaging. Advanced Topics in Science and Technology in China, 2013, , 513-538. | 0.1 | 0         |

92 Editorial (Thematic Issue: Molecular Image-Guided Cancer Treatment: Moving Towards Personalized) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5