
Michael B Dwinell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/178178/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	STING Activated Tumor-Intrinsic Type I Interferon Signaling Promotes CXCR3 Dependent Antitumor Immunity in Pancreatic Cancer. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 41-58.	4.5	35
2	Targeting PIM1-Mediated Metabolism in Myeloid Suppressor Cells to Treat Cancer. Cancer Immunology Research, 2021, 9, 454-469.	3.4	23
3	Targeted biologic inhibition of both tumor cell-intrinsic and intercellular CLPTM1L/CRR9-mediated chemotherapeutic drug resistance. Npj Precision Oncology, 2021, 5, 16.	5.4	13
4	Synchronous effects of targeted mitochondrial complex I inhibitors on tumor and immune cells abrogate melanoma progression. IScience, 2021, 24, 102653.	4.1	18
5	Inactivation of the Euchromatic Histone-Lysine N-Methyltransferase 2 Pathway in Pancreatic Epithelial Cells Antagonizes Cancer Initiation and Pancreatitis-Associated Promotion by Altering Growth and Immune Gene Expression Networks. Frontiers in Cell and Developmental Biology, 2021, 9, 681153.	3.7	5
6	Oncostatin M Receptor–Targeted Antibodies Suppress STAT3 Signaling and Inhibit Ovarian Cancer Growth. Cancer Research, 2021, 81, 5336-5352.	0.9	27
7	The C-terminal peptide of CCL21 drastically augments CCL21 activity through the dendritic cell lymph node homing receptor CCR7 by interaction with the receptor N-terminus. Cellular and Molecular Life Sciences, 2021, 78, 6963-6978.	5.4	11
8	Increased formation of reactive oxygen species during tumor growth: Ex vivo low-temperature EPR and in vivo bioluminescence analyses. Free Radical Biology and Medicine, 2020, 147, 167-174.	2.9	15
9	Mitochondria-targeted magnolol inhibits OXPHOS, proliferation, and tumor growth via modulation of energetics and autophagy in melanoma cells. Cancer Treatment and Research Communications, 2020, 25, 100210.	1.7	16
10	p38γ MAPK Is Essential for Aerobic Glycolysis and Pancreatic Tumorigenesis. Cancer Research, 2020, 80, 3251-3264.	0.9	47
11	Structural Features of an Extended C-Terminal Tail Modulate the Function of the Chemokine CCL21. Biochemistry, 2020, 59, 1338-1350.	2.5	11
12	STING agonist inflames the pancreatic cancer immune microenvironment and reduces tumor burden in mouse models. , 2019, 7, 115.		114
13	A Serum-Induced Transcriptome and Serum Cytokine Signature Obtained at Diagnosis Correlates with the Development of Early Pancreatic Ductal Adenocarcinoma Metastasis. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 680-689.	2.5	2
14	Synergistic inhibition of tumor cell proliferation by metformin and mito-metformin in the presence of iron chelators. Oncotarget, 2019, 10, 3518-3532.	1.8	14
15	GEMMs Are a Gem When it Comes to Defining the Role of HIF2α in Mucinous Cystic Neoplasms. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 165-166.	4.5	0
16	Stromal Inflammation in Pancreatic Cancer: Mechanisms and Translational Applications. , 2018, , 481-508.		0
17	A review of the basics of mitochondrial bioenergetics, metabolism, and related signaling pathways in cancer cells: Therapeutic targeting of tumor mitochondria with lipophilic cationic compounds. Redox Biology, 2018, 14, 316-327.	9.0	166
18	2543 High concentrations of CXCL12 decrease pancreatic adenocarcinoma growth. Journal of Clinical and Translational Science, 2018, 2, 13-14.	0.6	0

MICHAEL B DWINELL

#	Article	IF	CITATIONS
19	Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models. BMC Cancer, 2018, 18, 335.	2.6	271
20	Mitochondria-targeted drugs stimulate mitophagy and abrogate colon cancer cell proliferation. Journal of Biological Chemistry, 2018, 293, 14891-14904.	3.4	95
21	Diacylglycerol Kinase ζ (DGKζ) and Casitas b-Lineage Proto-Oncogene b–Deficient Mice Have Similar Functional Outcomes in T Cells but DGKζ-Deficient Mice Have Increased T Cell Activation and Tumor Clearance. ImmunoHorizons, 2018, 2, 107-118.	1.8	13
22	Cancer cell chemokines direct chemotaxis of activated stellate cells in pancreatic ductal adenocarcinoma. Laboratory Investigation, 2017, 97, 302-317.	3.7	30
23	Mitochondria-targeted metformins: anti-tumour and redox signalling mechanisms. Interface Focus, 2017, 7, 20160109.	3.0	26
24	Modified Metformin as a More Potent Anticancer Drug: Mitochondrial Inhibition, Redox Signaling, Antiproliferative Effects and Future EPR Studies. Cell Biochemistry and Biophysics, 2017, 75, 311-317.	1.8	18
25	Structural basis for chemokine recognition by a G protein–coupled receptor and implications for receptor activation. Science Signaling, 2017, 10, .	3.6	74
26	Exploiting agonist biased signaling of chemokines to target cancer. Molecular Carcinogenesis, 2017, 56, 804-813.	2.7	15
27	CCR7 Sulfotyrosine Enhances CCL21 Binding. International Journal of Molecular Sciences, 2017, 18, 1857.	4.1	21
28	Differences in Sulfotyrosine Binding amongst CXCR1 and CXCR2 Chemokine Ligands. International Journal of Molecular Sciences, 2017, 18, 1894.	4.1	13
29	Stromal Inflammation in Pancreatic Cancer: Mechanisms and Translational Applications. , 2017, , 1-28.		Ο
30	Mitochondria-Targeted Analogues of Metformin Exhibit Enhanced Antiproliferative and Radiosensitizing Effects in Pancreatic Cancer Cells. Cancer Research, 2016, 76, 3904-3915.	0.9	159
31	p38Î ³ MAPK Is a Therapeutic Target for Triple-Negative Breast Cancer by Stimulation of Cancer Stem-Like Cell Expansion. Stem Cells, 2015, 33, 2738-2747.	3.2	35
32	Antiproliferative effects of mitochondria-targeted cationic antioxidants and analogs: Role of mitochondrial bioenergetics and energy-sensing mechanism. Cancer Letters, 2015, 365, 96-106.	7.2	64
33	Pancreatic Cancer Cell Migration and Metastasis Is Regulated by Chemokine-Biased Agonism and Bioenergetic Signaling. Cancer Research, 2015, 75, 3529-3542.	0.9	56
34	CXM: A New Tool for Mapping Breast Cancer Risk in the Tumor Microenvironment. Cancer Research, 2014, 74, 6419-6429.	0.9	29
35	Chemokines in colitis: microRNA control. Gut, 2014, 63, 1202-1204.	12.1	5
36	Chemokines and chemokine receptors: Update on utility and challenges for the clinician. Surgery, 2014, 155, 961-973.	1.9	55

MICHAEL B DWINELL

#	Article	IF	CITATIONS
37	CXCL12 Chemokine Expression Suppresses Human Pancreatic Cancer Growth and Metastasis. PLoS ONE, 2014, 9, e90400.	2.5	74
38	Mitochondria-targeted vitamin E analogs inhibit breast cancer cell energy metabolism and promote cell death. BMC Cancer, 2013, 13, 285.	2.6	112
39	CXCR4 Negatively Regulates Keratinocyte Proliferation in IL-23-Mediated Psoriasiform Dermatitis. Journal of Investigative Dermatology, 2013, 133, 2530-2537.	0.7	20
40	E-cadherin Is Critical for Collective Sheet Migration and Is Regulated by the Chemokine CXCL12 Protein During Restitution. Journal of Biological Chemistry, 2012, 287, 22227-22240.	3.4	39
41	Cyclic AMP dysregulates intestinal epithelial cell restitution through PKA and RhoA*. Inflammatory Bowel Diseases, 2012, 18, 1081-1091.	1.9	34
42	Monomeric and dimeric CXCL12 inhibit metastasis through distinct CXCR4 interactions and signaling pathways. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17655-17660.	7.1	179
43	Targeted intestinal epithelial deletion of the chemokine receptor CXCR4 reveals important roles for extracellular-regulated kinase-1/2 in restitution. Laboratory Investigation, 2011, 91, 1040-1055.	3.7	28
44	CXCL12 stimulation leads to dynamic activation of laminin specific integrins promoting enterocyte adhesion and spreading. FASEB Journal, 2011, 25, 1067.1.	0.5	0
45	Calcium Mobilization Triggered by the Chemokine CXCL12 Regulates Migration in Wounded Intestinal Epithelial Monolayers. Journal of Biological Chemistry, 2010, 285, 16066-16075.	3.4	48
46	CXCL12 Chemokine Expression and Secretion Regulates Colorectal Carcinoma Cell Anoikis through Bim-Mediated Intrinsic Apoptosis. PLoS ONE, 2010, 5, e12895.	2.5	39
47	CCR6 Regulation of the Actin Cytoskeleton Orchestrates Human Beta Defensin-2- and CCL20-mediated Restitution of Colonic Epithelial Cells. Journal of Biological Chemistry, 2009, 284, 10034-10045.	3.4	71
48	Chemokines and chemokine receptors in mucosal homeostasis at the intestinal epithelial barrier in inflammatory bowel disease. Inflammatory Bowel Diseases, 2008, 14, 1000-1011.	1.9	118
49	Constitutive CXCL12 Expression Induces Anoikis in Colorectal Carcinoma Cells. Gastroenterology, 2008, 135, 508-517.e1.	1.3	43
50	Rho activation regulates CXCL12 chemokine stimulated actin rearrangement and restitution in model intestinal epithelia. Laboratory Investigation, 2007, 87, 807-817.	3.7	69
51	Flagellin-Independent Regulation of Chemokine Host Defense in Campylobacter jejuni -Infected Intestinal Epithelium. Infection and Immunity, 2006, 74, 3437-3447.	2.2	57
52	CXCL12 activation of CXCR4 regulates mucosal host defense through stimulation of epithelial cell migration and promotion of intestinal barrier integrity. American Journal of Physiology - Renal Physiology, 2005, 288, G316-G326.	3.4	81
53	Chemokine receptor CCR6 transduces signals that activate p130Casand alter cAMP-stimulated ion transport in human intestinal epithelial cells. American Journal of Physiology - Cell Physiology, 2005, 288, C321-C328.	4.6	46
54	Mucosal angiogenesis regulation by CXCR4 and its ligand CXCL12 expressed by human intestinal microvascular endothelial cells. American Journal of Physiology - Renal Physiology, 2004, 286, G1059-G1068.	3.4	59

MICHAEL B DWINELL

#	Article	IF	CITATIONS
55	SDF-1/CXCL12 regulates cAMP production and ion transport in intestinal epithelial cells via CXCR4. American Journal of Physiology - Renal Physiology, 2004, 286, G844-G850.	3.4	37
56	Immunobiology of epithelial chemokines in the intestinal mucosa. Surgery, 2003, 133, 601-607.	1.9	44
57	Angiogenic Effects of Interleukin 8 (CXCL8) in Human Intestinal Microvascular Endothelial Cells Are Mediated by CXCR2. Journal of Biological Chemistry, 2003, 278, 8508-8515.	3.4	421
58	Regulated production of interferon-inducible T-cell chemoattractants by human intestinal epithelial cells. Gastroenterology, 2001, 120, 49-59.	1.3	196
59	Regulated MIP-3α/CCL20 production by human intestinal epithelium: mechanism for modulating mucosal immunity. American Journal of Physiology - Renal Physiology, 2001, 280, G710-G719.	3.4	201
60	Analysis by High Density cDNA Arrays of Altered Gene Expression in Human Intestinal Epithelial Cells in Response to Infection with the Invasive Enteric BacteriaSalmonella. Journal of Biological Chemistry, 2000, 275, 14084-14094.	3.4	164
61	Human intestinal epithelial cells express receptors for platelet-activating factor. American Journal of Physiology - Renal Physiology, 1999, 277, G810-G818.	3.4	15
62	Chemokine receptor expression by human intestinal epithelial cells. Gastroenterology, 1999, 117, 359-367.	1.3	220
63	Mucosal immunity. Current Opinion in Gastroenterology, 1999, 15, 33.	2.3	4