MarÃ-a José Granados Muñoz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1781765/publications.pdf

Version: 2024-02-01

49 papers

1,584 citations

257450 24 h-index 330143 37 g-index

81 all docs

81 docs citations

81 times ranked 1687 citing authors

#	Article	IF	CITATIONS
1	Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign. Atmospheric Chemistry and Physics, 2016, 16, 455-504.	4.9	110
2	Effect of hygroscopic growth on the aerosol light-scattering coefficient: A review of measurements, techniques and error sources. Atmospheric Environment, 2016, 141, 494-507.	4.1	107
3	Lidar-Radiometer Inversion Code (LIRIC) for the retrieval of vertical aerosol properties from combined lidar/radiometer data: development and distribution in EARLINET. Atmospheric Measurement Techniques, 2016, 9, 1181-1205.	3.1	92
4	Automatic determination of the planetary boundary layer height using lidar: One $\hat{a} \in \mathbf{y}$ ear analysis over southeastern Spain. Journal of Geophysical Research, 2012, 117, .	3.3	88
5	The new sun-sky-lunar Cimel CE318-T multiband photometer – a comprehensive performance evaluation. Atmospheric Measurement Techniques, 2016, 9, 631-654.	3.1	86
6	A methodology for investigating dust model performance using synergistic EARLINET/AERONET dust concentration retrievals. Atmospheric Measurement Techniques, 2015, 8, 3577-3600.	3.1	76
7	Microphysical characterization of long-range transported biomass burning particles from North America at three EARLINET stations. Atmospheric Chemistry and Physics, 2017, 17, 5931-5946.	4.9	71
8	EARLINET instrument intercomparison campaigns: overview on strategy and results. Atmospheric Measurement Techniques, 2016, 9, 1001-1023.	3.1	58
9	Hygroscopic growth of atmospheric aerosol particles based on active remote sensing and radiosounding measurements: selected cases in southeastern Spain. Atmospheric Measurement Techniques, 2015, 8, 705-718.	3.1	50
10	Comparative assessment of GRASP algorithm for a dust event over Granada (Spain) during ChArMEx-ADRIMEDÂ2013 campaign. Atmospheric Measurement Techniques, 2017, 10, 4439-4457.	3.1	46
11	Statistical analysis of aerosol optical properties retrieved by Raman lidar over Southeastern Spain. Tellus, Series B: Chemical and Physical Meteorology, 2022, 65, 21234.	1.6	45
12	Extreme, wintertime Saharan dust intrusion in the Iberian Peninsula: Lidar monitoring and evaluation of dust forecast models during the February 2017 event. Atmospheric Research, 2019, 228, 223-241.	4.1	44
13	Tropospheric water vapour and relative humidity profiles from lidar and microwave radiometry. Atmospheric Measurement Techniques, 2014, 7, 1201-1211.	3.1	43
14	Validation of the TOLNet lidars: the Southern California Ozone Observation Project (SCOOP). Atmospheric Measurement Techniques, 2018, 11, 6137-6162.	3.1	40
15	Retrieving aerosol microphysical properties by Lidarâ€Radiometer Inversion Code (LIRIC) for different aerosol types. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4836-4858.	3.3	39
16	EARLINET: potential operationality of a research network. Atmospheric Measurement Techniques, 2015, 8, 4587-4613.	3.1	39
17	Eruption of the Eyjafjallaj \tilde{A} fkull Volcano in spring 2010: Multiwavelength Raman lidar measurements of sulphate particles in the lower troposphere. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1804-1813.	3.3	38
18	Assessment of lidar depolarization uncertainty by means of a polarimetric lidar simulator. Atmospheric Measurement Techniques, 2016, 9, 4935-4953.	3.1	38

#	Article	IF	CITATIONS
19	Aerosol transport over the western Mediterranean basin: Evidence of the contribution of fine particles to desert dust plumes over Alborán Island. Journal of Geophysical Research D: Atmospheres, 2014, 119, 14,028.	3.3	36
20	A comparative study of aerosol microphysical properties retrieved from ground-based remote sensing and aircraft in situ measurements during a Saharan dust event. Atmospheric Measurement Techniques, 2016, 9, 1113-1133.	3.1	36
21	A new methodology for PBL height estimations based on lidar depolarization measurements: analysis and comparison against MWR and WRF model-based results. Atmospheric Chemistry and Physics, 2017, 17, 6839-6851.	4.9	35
22	Analysis of lidar depolarization calibration procedure and application to the atmospheric aerosol characterization. International Journal of Remote Sensing, 2013, 34, 3543-3560.	2.9	34
23	Study of mineral dust entrainment in the planetary boundary layer by lidar depolarisation technique. Tellus, Series B: Chemical and Physical Meteorology, 2022, 67, 26180.	1.6	34
24	Hygroscopic growth study in the framework of EARLINET during the SLOPE I campaign: synergy of remote sensing and in situ instrumentation. Atmospheric Chemistry and Physics, 2018, 18, 7001-7017.	4.9	32
25	Impact of mineral dust on shortwave and longwave radiation: evaluation of different vertically resolved parameterizations in 1-D radiative transfer computations. Atmospheric Chemistry and Physics, 2019, 19, 523-542.	4.9	32
26	Aerosol properties over the western Mediterranean basin: temporal and spatial variability. Atmospheric Chemistry and Physics, 2015, 15, 2473-2486.	4.9	26
27	Profiling of aerosol microphysical properties at several EARLINET/AERONET sites during the JulyÂ2012 ChArMEx/EMEP campaign. Atmospheric Chemistry and Physics, 2016, 16, 7043-7066.	4.9	26
28	Tropospheric ozone seasonal and long-term variability as seen by lidar and surface measurements at the JPL-Table Mountain Facility, California. Atmospheric Chemistry and Physics, 2016, 16, 9299-9319.	4.9	21
29	Characterization of aerosol hygroscopicity using Raman lidar measurements at the EARLINET station of Payerne. Atmospheric Chemistry and Physics, 2019, 19, 11651-11668.	4.9	21
30	Origin and pathways of the mineral dust transport to two Spanish EARLINET sites: Effect on the observed columnar and range-resolved dust optical properties. Atmospheric Research, 2017, 187, 69-83.	4.1	15
31	Characterization of atmospheric aerosols for a long range transport of biomass burning particles from Canadian forest fires over the southern Iberian Peninsula in July 2013. Optica Pura Y Aplicada, 2014, 47, 43-49.	0.1	14
32	Two-dimensional mineral dust radiative effect calculations from CALIPSO observations over Europe. Atmospheric Chemistry and Physics, 2019, 19, 13157-13173.	4.9	13
33	Aerosol size distribution from inversion of solar radiances and measured at ground-level during SPALI10 campaign. Atmospheric Research, 2013, 127, 130-140.	4.1	12
34	Overview of the SLOPE I and II campaigns: aerosol properties retrieved with lidar and sun–sky photometer measurements. Atmospheric Chemistry and Physics, 2021, 21, 9269-9287.	4.9	12
35	Synergic estimation of columnar integrated aerosol properties and their vertical resolved profiles in respect to the scenarios of dust intrusions over Granada. Atmospheric Environment, 2016, 145, 439-454.	4.1	11
36	Feasibility of Ceilometers Data to Estimate Radiative Forcing Values: Application to Different Conditions around the COVID-19 Lockdown Period. Remote Sensing, 2020, 12, 3699.	4.0	8

#	Article	IF	CITATIONS
37	Statistical validation of Aeolus L2A particle backscatter coefficient retrievals over ACTRIS/EARLINET stations on the Iberian Peninsula. Atmospheric Chemistry and Physics, 2022, 22, 1425-1451.	4.9	8
38	Calibration of Raman Lidar Water Vapor Mixing Ratio Measurements Using Zenithal Measurements of Diffuse Sunlight and a Radiative Transfer Model. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 7405-7414.	6.3	6
39	Contribution of EARLINET/ACTRIS to the summer 2013 Special Observing Period of the ChArMEx project: monitoring of a Saharan dust event over the western and central Mediterranean. International Journal of Remote Sensing, 2016, 37, 4698-4711.	2.9	5
40	Influence of the North American monsoon on Southern California tropospheric ozone levels during summer in 2013 and 2014. Geophysical Research Letters, 2017, 44, 6431-6439.	4.0	4
41	Spatiotemporal changes in aerosol properties by hygroscopic growth and impacts on radiative forcing and heating rates during DISCOVER-AQ 2011. Atmospheric Chemistry and Physics, 2021, 21, 12021-12048.	4.9	4
42	Comparison between two algorithms based on different wavelets to obtain the Planetary Boundary Layer height. Proceedings of SPIE, 2014, , .	0.8	2
43	Synergy of Raman Lidar and Modeled Temperature for Relative Humidity Profiling: Assessment and Uncertainty Analysis. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 8841-8852.	6.3	2
44	Experimental determination of UV- and VIS- lidar overlap function. Optica Pura Y Aplicada, 2014, 47, 169-175.	0.1	2
45	Evaluation of LIRIC Algorithm Performance Using Independent Sun-Sky Photometer Data at Two Altitude Levels. Remote Sensing, 2020, 12, 842.	4.0	1
46	Active and passive remote sensing for monitoring the planetary boundary layer height. Optica Pura Y Aplicada, 2014, 47, 83-90.	0.1	1
47	Evaluation of the hygroscopic behavior of aerosols over Sao Paulo: one-day case study. , 2014, , .		0
48	Retrieval of the relation between aerosol number concentration and aerosol optical depth using MOPSMAP., 2021,,.		0
49	Lidar and Radar Signal Simulation: Stability Assessment of the Aerosol–Cloud Interaction Index. Remote Sensing, 2022, 14, 1333.	4.0	O