Natascia Ventura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1781683/publications.pdf

Version: 2024-02-01

55	7,260	29 h-index	54
papers	citations		g-index
63	63	63	17366
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Insights into cisplatin-induced neurotoxicity and mitochondrial dysfunction in <i>Caenorhabditis elegans</i> . DMM Disease Models and Mechanisms, 2022, , .	1.2	3
2	Aryl Hydrocarbon Receptor-Dependent and -Independent Pathways Mediate Curcumin Anti-Aging Effects. Antioxidants, 2022, 11, 613.	2.2	2
3	High-Content C. elegans Screen Identifies Natural Compounds Impacting Mitochondria-Lipid Homeostasis and Promoting Healthspan. Cells, 2022, 11, 100.	1.8	9
4	Neuroligin-mediated neurodevelopmental defects are induced by mitochondrial dysfunction and prevented by lutein in C. elegans. Nature Communications, 2022, 13, 2620.	5.8	11
5	Inhibition of ATR Reverses a Mitochondrial Respiratory Insufficiency. Cells, 2022, 11, 1731.	1.8	0
6	Identification of Modulators of the C.Âelegans Aryl Hydrocarbon Receptor and Characterization of Transcriptomic and Metabolic AhR-1 Profiles. Antioxidants, 2022, 11, 1030.	2.2	5
7	Nanoplastic Toxicity: Insights and Challenges from Experimental Model Systems. Small, 2022, 18, .	5.2	29
8	Antioxidant and Anti-Inflammaging Ability of Prune (Prunus Spinosa L.) Extract Result in Improved Wound Healing Efficacy. Antioxidants, 2021, 10, 374.	2.2	21
9	Cisplatin-induced neurotoxicity involves the disruption of serotonergic neurotransmission. Pharmacological Research, 2021, 174, 105921.	3.1	8
10	Dietary and environmental factors have opposite AhR-dependent effects on C. elegans healthspan. Aging, 2021, 13, 104-133.	1.4	12
11	Editorial: Advances in Metabolic Mechanisms of Aging and Its Related Diseases. Frontiers in Physiology, 2020, 11, 594974.	1.3	1
12	AHR Signaling Dampens Inflammatory Signature in Neonatal Skin $\hat{I}^3\hat{I}$ T Cells. International Journal of Molecular Sciences, 2020, 21, 2249.	1.8	11
13	Mitophagy and iron: two actors sharing the stage in age-associated neuronal pathologies. Mechanisms of Ageing and Development, 2020, 188, 111252.	2.2	15
14	The flavonoid 4,4′-dimethoxychalcone promotes autophagy-dependent longevity across species. Nature Communications, 2019, 10, 651.	5.8	100
15	The Aryl Hydrocarbon Receptor (AhR) in the Aging Process: Another Puzzling Role for This Highly Conserved Transcription Factor. Frontiers in Physiology, 2019, 10, 1561.	1.3	50
16	Mitochondrial bioenergetic changes during development as an indicator of C. elegans health-span. Aging, 2019, 11, 6535-6554.	1.4	16
17	Targeting the BECN1-BCL2 autophagy regulatory complex to promote longevity. Biotarget, 2018, 2, 16-16.	0.5	O
18	$\langle \text{scp} \rangle \text{BRCA} / \text{scp} > 1$ and $\langle \text{scp} \rangle \text{BARD} / \text{scp} > 1$ mediate apoptotic resistance but not longevity upon mitochondrial stress in $\langle \text{i} \rangle \text{Caenorhabditis elegans} / \text{i} \rangle$. EMBO Reports, 2018, 19, .	2.0	8

#	Article	IF	Citations
19	HDAC inhibition improves autophagic and lysosomal function to prevent loss of subcutaneous fat in a mouse model of Cockayne syndrome. Science Translational Medicine, 2018, 10, .	5.8	37
20	Constitutive MAP-kinase activation suppresses germline apoptosis in NTH-1 DNA glycosylase deficient C. elegans. DNA Repair, 2018, 61, 46-55.	1.3	10
21	Mitochondrial Longevity Pathways. Healthy Ageing and Longevity, 2017, , 83-108.	0.2	2
22	Mitochondrial autophagy promotes healthy aging. Cell Cycle, 2016, 15, 1805-1806.	1.3	13
23	C. elegans screening strategies to identify pro-longevity interventions. Mechanisms of Ageing and Development, 2016, 157, 60-69.	2.2	25
24	The aryl hydrocarbon receptor promotes aging phenotypes across species. Scientific Reports, 2016, 6, 19618.	1.6	67
25	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
26	C. elegans as a model organism for human mitochondrial associated disorders. Mitochondrion, 2016, 30, 117-125.	1.6	44
27	Crosstalk of clock gene expression and autophagy in aging. Aging, 2016, 8, 1876-1895.	1.4	35
28	Caenorhabditis elegans ATAD-3 modulates mitochondrial iron and heme homeostasis. Biochemical and Biophysical Research Communications, 2015, 467, 389-394.	1.0	8
29	Iron-Starvation-Induced Mitophagy Mediates Lifespan Extension upon Mitochondrial Stress in C.Âelegans. Current Biology, 2015, 25, 1810-1822.	1.8	188
30	An automated phenotype-based microscopy screen to identify pro-longevity interventions acting through mitochondria in C. elegans. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1469-1478.	0.5	16
31	The hallmarks of fibroblast ageing. Mechanisms of Ageing and Development, 2014, 138, 26-44.	2.2	179
32	Mitochondrial stress extends lifespan in C. elegans through neuronal hormesis. Experimental Gerontology, 2014, 56, 89-98.	1.2	45
33	The interplay between mitochondria and autophagy and its role in the aging process. Experimental Gerontology, 2014, 56, 147-153.	1.2	54
34	Mitochondria and metabolic control of the aging process. Experimental Gerontology, 2014, 56, 1-2.	1.2	5
35	Autophagy induction extends lifespan and reduces lipid content in response to frataxin silencing in C. elegans. Experimental Gerontology, 2013, 48, 191-201.	1.2	67
36	Healthy aging: what can we learn from Caenorhabditis elegans?. Zeitschrift Fur Gerontologie Und Geriatrie, 2013, 46, 623-628.	0.8	23

#	Article	IF	CITATIONS
37	A <i>de novo</i> X;8 translocation creates a <i>PTK2</i> - <i>THOC2</i> gene fusion with <i>THOC2</i> expression knockdown in a patient with psychomotor retardation and congenital cerebellar hypoplasia. Journal of Medical Genetics, 2013, 50, 543-551.	1.5	42
38	Active transcriptomic and proteomic reprogramming in the C. elegans nucleotide excision repair mutant xpa-1. Nucleic Acids Research, 2013, 41, 5368-5381.	6.5	40
39	Gut microbiota as a candidate for lifespan extension: an ecological/evolutionary perspective targeted on living organisms as metaorganisms. Biogerontology, 2011, 12, 599-609.	2.0	64
40	Preventing the ubiquitin–proteasome-dependent degradation of frataxin, the protein defective in Friedreich's ataxia. Human Molecular Genetics, 2011, 20, 1253-1261.	1.4	51
41	A role for p53 in mitochondrial stress response control of longevity in C. elegans. Experimental Gerontology, 2010, 45, 550-557.	1.2	34
42	Long-lived mitochondrial (Mit) mutants of Caenorhabditis elegans utilize a novel metabolism. FASEB Journal, 2010, 24, 4977-4988.	0.2	68
43	Longâ€lived mitochondrial (Mit) mutants of <i>Caenorhabditis elegans</i> vutilize a novel metabolism. FASEB Journal, 2010, 24, 4977-4988.	0.2	9
44	p53/CEPâ€1 increases or decreases lifespan, depending on level of mitochondrial bioenergetic stress. Aging Cell, 2009, 8, 380-393.	3.0	110
45	Relationship Between Mitochondrial Electron Transport Chain Dysfunction, Development, and Life Extension in Caenorhabditis elegans. PLoS Biology, 2007, 5, e259.	2.6	331
46	In vivo maturation of human frataxin. Human Molecular Genetics, 2007, 16, 1534-1540.	1.4	103
47	Activation of SKN-1 by novel kinases in Caenorhabditis elegans. Free Radical Biology and Medicine, 2007, 43, 1560-1566.	1.3	62
48	Caenorhabditis elegans mitochondrial mutants as an investigative tool to study human neurodegenerative diseases associated with mitochondrial dysfunction. Biotechnology Journal, 2007, 2, 584-595.	1.8	49
49	Long-lived C. elegans Mitochondrial mutants as a model for human mitochondrial-associated diseases. Experimental Gerontology, 2006, 41, 974-991.	1.2	76
50	A Pool of Extramitochondrial Frataxin That Promotes Cell Survival. Journal of Biological Chemistry, 2006, 281, 16750-16756.	1.6	79
51	C. elegans as a model for Friedreich Ataxia. FASEB Journal, 2006, 20, 1029-1030.	0.2	15
52	Reduced expression of frataxin extends the lifespan of Caenorhabditis elegans. Aging Cell, 2005, 4, 109-112.	3.0	79
53	Characterization of apoptosis signal transduction pathways in HL-5 cardiomyocytes exposed to ischemia/reperfusion oxidative stress model. Journal of Cellular Physiology, 2003, 195, 27-37.	2.0	60
54	Caspase-Dependent Cleavage of c-Abl Contributes to Apoptosis. Molecular and Cellular Biology, 2003, 23, 2790-2799.	1.1	58

#	Article	IF	CITATIONS
55	Acetylation Suppresses the Proapoptotic Activity of GD3 Ganglioside. Journal of Experimental Medicine, 2002, 196, 1535-1541.	4.2	99