
## Tuhin Mukherjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/178111/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Additive manufacturing of metallic components – Process, structure and properties. Progress in<br>Materials Science, 2018, 92, 112-224.                                                               | 32.8 | 4,751     |
| 2  | An improved prediction of residual stresses and distortion in additive manufacturing. Computational Materials Science, 2017, 126, 360-372.                                                            | 3.0  | 543       |
| 3  | Scientific, technological and economic issues in metal printing and their solutions. Nature Materials, 2019, 18, 1026-1032.                                                                           | 27.5 | 336       |
| 4  | Printability of alloys for additive manufacturing. Scientific Reports, 2016, 6, 19717.                                                                                                                | 3.3  | 319       |
| 5  | Building blocks for a digital twin of additive manufacturing. Acta Materialia, 2017, 135, 390-399.                                                                                                    | 7.9  | 258       |
| 6  | Mechanistic models for additive manufacturing of metallic components. Progress in Materials Science, 2021, 116, 100703.                                                                               | 32.8 | 246       |
| 7  | Metallurgy, mechanistic models and machine learning in metal printing. Nature Reviews Materials, 2021, 6, 48-68.                                                                                      | 48.7 | 220       |
| 8  | A digital twin for rapid qualification of 3D printed metallic components. Applied Materials Today, 2019, 14, 59-65.                                                                                   | 4.3  | 190       |
| 9  | Heat and fluid flow in additive manufacturing – Part II: Powder bed fusion of stainless steel, and<br>titanium, nickel and aluminum base alloys. Computational Materials Science, 2018, 150, 369-380. | 3.0  | 169       |
| 10 | Mitigation of thermal distortion during additive manufacturing. Scripta Materialia, 2017, 127, 79-83.                                                                                                 | 5.2  | 151       |
| 11 | Mitigation of lack of fusion defects in powder bed fusion additive manufacturing. Journal of<br>Manufacturing Processes, 2018, 36, 442-449.                                                           | 5.9  | 141       |
| 12 | Fusion zone geometries, cooling rates and solidification parameters during wire arc additive manufacturing. International Journal of Heat and Mass Transfer, 2018, 127, 1084-1094.                    | 4.8  | 130       |
| 13 | Heat and fluid flow in additive manufacturing—Part I: Modeling of powder bed fusion. Computational<br>Materials Science, 2018, 150, 304-313.                                                          | 3.0  | 127       |
| 14 | Dimensionless numbers in additive manufacturing. Journal of Applied Physics, 2017, 121, .                                                                                                             | 2.5  | 115       |
| 15 | Residual stresses and distortion in additively manufactured compositionally graded and dissimilar joints. Computational Materials Science, 2018, 143, 325-337.                                        | 3.0  | 91        |
| 16 | Three-dimensional grain growth during multi-layer printing of a nickel-based alloy Inconel 718.<br>Additive Manufacturing, 2019, 25, 448-459.                                                         | 3.0  | 64        |
| 17 | Conditions for void formation in friction stir welding from machine learning. Npj Computational<br>Materials, 2019, 5, .                                                                              | 8.7  | 49        |
| 18 | Residual stresses and distortion in the patterned printing of titanium and nickel alloys. Additive<br>Manufacturing, 2019, 29, 100808.                                                                | 3.0  | 40        |

TUHIN MUKHERJEE

| #  | Article                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Residual stresses in wire-arc additive manufacturing – Hierarchy of influential variables. Additive<br>Manufacturing, 2020, 35, 101355.                              | 3.0 | 40        |
| 20 | Machine learning based hierarchy of causative variables for tool failure in friction stir welding. Acta<br>Materialia, 2020, 192, 67-77.                             | 7.9 | 37        |
| 21 | Physics-informed machine learning and mechanistic modeling of additive manufacturing to reduce defects. Applied Materials Today, 2021, 24, 101123.                   | 4.3 | 34        |
| 22 | An improved heat transfer and fluid flow model of wire-arc additive manufacturing. International<br>Journal of Heat and Mass Transfer, 2021, 167, 120835.            | 4.8 | 29        |
| 23 | Printability of 316 stainless steel. Science and Technology of Welding and Joining, 2019, 24, 412-419.                                                               | 3.1 | 28        |
| 24 | Spatial and temporal variation of hardness of a printed steel part. Acta Materialia, 2021, 209, 116775.                                                              | 7.9 | 25        |
| 25 | Crack free metal printing using physics informed machine learning. Acta Materialia, 2022, 226, 117612.                                                               | 7.9 | 22        |
| 26 | Grain Growth Modeling for Additive Manufacturing of Nickel Based Superalloys. , 2016, , 265-269.                                                                     |     | 9         |
| 27 | High-throughput screening of surface roughness during additive manufacturing. Journal of Manufacturing Processes, 2022, 81, 65-77.                                   | 5.9 | 6         |
| 28 | Control of asymmetric track geometry in printed parts of stainless steels, nickel, titanium and aluminum alloys. Computational Materials Science, 2020, 182, 109791. | 3.0 | 5         |