Wenchao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1781079/publications.pdf

Version: 2024-02-01

		81900	133252
59	11,820	39	59
papers	citations	h-index	g-index
59	59	59	6911
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Delicate crystallinity control enables high-efficiency P3HT organic photovoltaic cells. Journal of Materials Chemistry A, 2022, 10, 3418-3429.	10.3	45
2	Revealing the Molar Mass Dependence on Thermal, Microstructural, and Electrical Properties of Direct Arylation Polycondensation Prepared Poly(3-hexylthiophene). ACS Applied Polymer Materials, 2022, 4, 1826-1835.	4.4	7
3	Thermally stable poly(3â€hexylthiophene): Nonfullerene solar cells with efficiency breaking 10%. Aggregate, 2022, 3, .	9.9	38
4	High-Spin ($\langle i \rangle S \langle i \rangle = 1$) Blatter-Based Diradical with Robust Stability and Electrical Conductivity. Journal of the American Chemical Society, 2022, 144, 6059-6070.	13.7	30
5	Simple Polythiophene Solar Cells Approaching 10% Efficiency via Carbon Chain Length Modulation of Poly(3-alkylthiophene). Macromolecules, 2022, 55, 133-145.	4.8	33
6	Lead-Free Organic–Perovskite Hybrid Quantum Wells for Highly Stable Light-Emitting Diodes. ACS Nano, 2021, 15, 6316-6325.	14.6	73
7	Manipulating polymer composition to create low-cost, high-fidelity sensors for indoor CO2 monitoring. Scientific Reports, 2021, 11, 13237.	3.3	9
8	Thermoelectric Performance of Lead-Free Two-Dimensional Halide Perovskites Featuring Conjugated Ligands. Nano Letters, 2021, 21, 7839-7844.	9.1	28
9	A selenophene-containing conjugated organic ligand for two-dimensional halide perovskites. Chemical Communications, 2021, 57, 11469-11472.	4.1	7
10	Two-Dimensional Organic Semiconductor-Incorporated Perovskite (OSiP) Electronics. ACS Applied Electronic Materials, 2021, 3, 5155-5164.	4.3	9
11	Modulation of Building Block Size in Conjugated Polymers with D–A Structure for Polymer Solar Cells. Macromolecules, 2019, 52, 7929-7938.	4.8	10
12	Efficiency above 12% for 1 cm ² Flexible Organic Solar Cells with Ag/Cu Grid Transparent Conducting Electrode. Advanced Science, 2019, 6, 1901490.	11.2	58
13	12.88% efficiency in doctor-blade coated organic solar cells through optimizing the surface morphology of a ZnO cathode buffer layer. Journal of Materials Chemistry A, 2019, 7, 212-220.	10.3	70
14	Vacuum-assisted annealing method for high efficiency printable large-area polymer solar cell modules. Journal of Materials Chemistry C, 2019, 7, 3206-3211.	5.5	27
15	Boosting the Performance of Non-Fullerene Organic Solar Cells via Cross-Linked Donor Polymers Design. Macromolecules, 2019, 52, 2214-2221.	4.8	26
16	Modulating Molecular Orientation Enables Efficient Nonfullerene Small-Molecule Organic Solar Cells. Chemistry of Materials, 2018, 30, 2129-2134.	6.7	157
17	Environmentally Friendly Solventâ€Processed Organic Solar Cells that are Highly Efficient and Adaptable for the Bladeâ€Coating Method. Advanced Materials, 2018, 30, 1704837.	21.0	173
18	A Novel Strategy for Scalable Highâ€Efficiency Planar Perovskite Solar Cells with New Precursors and Cation Displacement Approach. Advanced Materials, 2018, 30, e1804454.	21.0	25

#	Article	IF	CITATIONS
19	Revealing the effects of molecular packing on the performances of polymer solar cells based on A–D–C–D–A type non-fullerene acceptors. Journal of Materials Chemistry A, 2018, 6, 12132-12141.	10.3	119
20	A Wide Band Gap Polymer with a Deep Highest Occupied Molecular Orbital Level Enables 14.2% Efficiency in Polymer Solar Cells. Journal of the American Chemical Society, 2018, 140, 7159-7167.	13.7	654
21	Polymer non-fullerene solar cells of vastly different efficiencies for minor side-chain modification: impact of charge transfer, carrier lifetime, morphology and mobility. Journal of Materials Chemistry A, 2018, 6, 12484-12492.	10.3	43
22	New Wide Band Gap Donor for Efficient Fullerene-Free All-Small-Molecule Organic Solar Cells. Journal of the American Chemical Society, 2017, 139, 1958-1966.	13.7	260
23	Significant Influence of the Methoxyl Substitution Position on Optoelectronic Properties and Molecular Packing of Smallâ€Molecule Electron Acceptors for Photovoltaic Cells. Advanced Energy Materials, 2017, 7, 1700183.	19.5	184
24	Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells. Journal of the American Chemical Society, 2017, 139, 7148-7151.	13.7	2,524
25	Morphology control enables thickness-insensitive efficient nonfullerene polymer solar cells. Materials Chemistry Frontiers, 2017, 1, 2057-2064.	5.9	42
26	Interface design for high-efficiency non-fullerene polymer solar cells. Energy and Environmental Science, 2017, 10, 1784-1791.	30.8	187
27	Highâ€Efficiency Nonfullerene Organic Solar Cells: Critical Factors that Affect Complex Multiâ€Length Scale Morphology and Device Performance. Advanced Energy Materials, 2017, 7, 1602000.	19.5	232
28	Design of a New Smallâ€Molecule Electron Acceptor Enables Efficient Polymer Solar Cells with High Fill Factor. Advanced Materials, 2017, 29, 1704051.	21.0	224
29	A triptycene-cored perylenediimide derivative and its application in organic solar cells as a non-fullerene acceptor. New Journal of Chemistry, 2017, 41, 10237-10244.	2.8	6
30	Environmentally-friendly solvent processed fullerene-free organic solar cells enabled by screening halogen-free solvent additives. Science China Materials, 2017, 60, 697-706.	6.3	33
31	Ternary Polymer Solar Cells based on Two Acceptors and One Donor for Achieving 12.2% Efficiency. Advanced Materials, 2017, 29, 1604059.	21.0	333
32	Fullereneâ€Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability. Advanced Materials, 2016, 28, 4734-4739.	21.0	1,698
33	Greenâ€Solventâ€Processed Allâ€Polymer Solar Cells Containing a Perylene Diimideâ€Based Acceptor with an Efficiency over 6.5%. Advanced Energy Materials, 2016, 6, 1501991.	19.5	157
34	Efficient fullerene-based and fullerene-free polymer solar cells using two wide band gap thiophene-thiazolothiazole-based photovoltaic materials. Journal of Materials Chemistry A, 2016, 4, 9511-9518.	10.3	34
35	A Fluorinated Polythiophene Derivative with Stabilized Backbone Conformation for Highly Efficient Fullerene and Non-Fullerene Polymer Solar Cells. Macromolecules, 2016, 49, 2993-3000.	4.8	141
36	Enhancing the power conversion efficiency of polymer solar cells to 9.26% by a synergistic effect of fluoro and carboxylate substitution. Journal of Materials Chemistry A, 2016, 4, 8097-8104.	10.3	39

#	Article	IF	Citations
37	Energyâ€Level Modulation of Smallâ€Molecule Electron Acceptors to Achieve over 12% Efficiency in Polymer Solar Cells. Advanced Materials, 2016, 28, 9423-9429.	21.0	1,307
38	Realizing 11.3% efficiency in fullerene-free polymer solar cells by device optimization. Science China Chemistry, 2016, 59, 1574-1582.	8.2	78
39	Manipulation of Domain Purity and Orientational Ordering in High Performance All-Polymer Solar Cells. Chemistry of Materials, 2016, 28, 6178-6185.	6.7	87
40	Highâ€Efficiency Polymer Solar Cells Enabled by Environmentâ€Friendly Singleâ€Solvent Processing. Advanced Energy Materials, 2016, 6, 1502177.	19.5	91
41	Correlations among Chemical Structure, Backbone Conformation, and Morphology in Two Highly Efficient Photovoltaic Polymer Materials. Macromolecules, 2016, 49, 120-126.	4.8	59
42	PBDT-TSR: a highly efficient conjugated polymer for polymer solar cells with a regioregular structure. Journal of Materials Chemistry A, 2016, 4, 1708-1713.	10.3	75
43	Improving the open-circuit voltage of alkylthio-substituted photovoltaic polymers via post-oxidation. Organic Electronics, 2016, 28, 39-46.	2.6	14
44	Dialkylthio Substitution: An Effective Method to Modulate the Molecular Energy Levels of 2D-BDT Photovoltaic Polymers. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3575-3583.	8.0	43
45	Manipulating Aggregation and Molecular Orientation in Allâ€Polymer Photovoltaic Cells. Advanced Materials, 2015, 27, 6046-6054.	21.0	264
46	Molecular Design and Application of a Photovoltaic Polymer with Improved Optical Properties and Molecular Energy Levels. Macromolecules, 2015, 48, 3493-3499.	4.8	52
47	An Easily Accessible Cathode Buffer Layer for Achieving Multiple High Performance Polymer Photovoltaic Cells. Journal of Physical Chemistry C, 2015, 119, 27322-27329.	3.1	30
48	Toward efficient non-fullerene polymer solar cells: Selection of donor polymers. Organic Electronics, 2015, 17, 295-303.	2.6	41
49	Realizing over 10% efficiency in polymer solar cell by device optimization. Science China Chemistry, 2015, 58, 248-256.	8.2	311
50	Optimization of side chains in alkylthiothiophene-substituted benzo[1,2-b:4,5-b′]dithiophene-based photovoltaic polymers. Polymer Chemistry, 2015, 6, 2752-2760.	3.9	37
51	Highly Efficient Photovoltaic Polymers Based on Benzodithiophene and Quinoxaline with Deeper HOMO Levels. Macromolecules, 2015, 48, 5172-5178.	4.8	104
52	Enhanced Efficiency in Fullerene-Free Polymer Solar Cell by Incorporating Fine-designed Donor and Acceptor Materials. ACS Applied Materials & Samp; Interfaces, 2015, 7, 9274-9280.	8.0	110
53	A universal halogen-free solvent system for highly efficient polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 12723-12729.	10.3	97
54	Enhanced efficiency of polymer photovoltaic cells via the incorporation of a water-soluble naphthalene diimide derivative as a cathode interlayer. Journal of Materials Chemistry C, 2015, 3, 9565-9571.	5.5	60

WENCHAO

#	Article	IF	CITATION
55	Selecting a Donor Polymer for Realizing Favorable Morphology in Efficient Nonâ€fullerene Acceptorâ€based Solar Cells. Small, 2014, 10, 4658-4663.	10.0	76
56	Bay-linked perylene bisimides as promising non-fullerene acceptors for organic solar cells. Chemical Communications, 2014, 50, 1024-1026.	4.1	290
57	Side Chain Selection for Designing Highly Efficient Photovoltaic Polymers with 2D-Conjugated Structure. Macromolecules, 2014, 47, 4653-4659.	4.8	259
58	Highly Efficient 2D-Conjugated Benzodithiophene-Based Photovoltaic Polymer with Linear Alkylthio Side Chain. Chemistry of Materials, 2014, 26, 3603-3605.	6.7	531
59	Ultrathin Polyaniline-based Buffer Layer for Highly Efficient Polymer Solar Cells with Wide Applicability. Scientific Reports, 2014, 4, 6570.	3.3	69