
Günther K H Zupanc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1780505/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	It's all about seeing and hearing: the Editors' and Readers' Choice Awards 2022. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2022, , 1.	1.6	1
2	The Journal of Comparative Physiology A: rooted in great tradition, committed to innovation and discovery. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2022, 208, 213-223.	1.6	4
3	Government funding of research beyond biomedicine: challenges and opportunities for neuroethology. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2022, 208, 443-456.	1.6	2
4	Suggested reviewers: friends or foes?. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2022, 208, 463-466.	1.6	3
5	The Neurosphere Simulator: An educational online tool for modeling neural stem cell behavior and tissue growth. Developmental Biology, 2021, 469, 80-85.	2.0	2
6	Cellular automata modeling suggests symmetric stem-cell division, cell death, and cell drift as key mechanisms driving adult spinal cord growth in teleost fish. Journal of Theoretical Biology, 2021, 509, 110474.	1.7	3
7	Adult neurogenesis in the central nervous system of teleost fish: from stem cells to function and evolution. Journal of Experimental Biology, 2021, 224, .	1.7	14
8	Modeling of sustained spontaneous network oscillations of a sexually dimorphic brainstem nucleus: the role of potassium equilibrium potential. Journal of Computational Neuroscience, 2021, 49, 419-439.	1.0	3
9	Development of a sexual dimorphism in a central pattern generator driving a rhythmic behavior: The role of gliaâ€mediated potassium buffering in the pacemaker nucleus of the weakly electric fish <i>Apteronotus leptorhynchus</i> . Developmental Neurobiology, 2020, 80, 6-15.	3.0	9
10	Stochastic cellular automata model of tumorous neurosphere growth: Roles of developmental maturity and cell death. Journal of Theoretical Biology, 2019, 467, 100-110.	1.7	9
11	Adult Neural Stem Cells in Development, Regeneration, and Aging. Developmental Neurobiology, 2019, 79, 391-395.	3.0	2
12	Cellular Automata Modeling of Stem ellâ€Driven Development of Tissue in the Nervous System. Developmental Neurobiology, 2019, 79, 497-517.	3.0	18
13	Calbindin-D28k expression in spinal electromotoneurons of the weakly electric fish Apteronotus leptorhynchus during adult development and regeneration. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2019, 205, 595-608.	1.6	1
14	Stem ellâ€Driven Growth and Regrowth of the Adult Spinal Cord in Teleost Fish. Developmental Neurobiology, 2019, 79, 406-423.	3.0	6
15	Glia-mediated modulation of extracellular potassium concentration determines the sexually dimorphic output frequency of a model brainstem oscillator. Journal of Theoretical Biology, 2019, 471, 117-124.	1.7	6
16	Stochastic cellular automata model of neurosphere growth: Roles of proliferative potential, contact inhibition, cell death, and phagocytosis. Journal of Theoretical Biology, 2018, 445, 151-165.	1.7	14
17	Growth of adult spinal cord in knifefish: Development and parametrization of a distributed model. Journal of Theoretical Biology, 2018, 437, 101-114.	1.7	7
18	Olfactory navigation versus olfactoryÂactivation: a controversy revisited. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2018, 204, 703-706.	1.6	10

#	Article	IF	CITATIONS
19	Mapping brain structure and function: cellular resolution, global perspective. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2017, 203, 245-264.	1.6	4
20	Additive neurogenesis supported by multiple stem cell populations mediates adult spinal cord development: A spatiotemporal statistical mapping analysis in a teleost model of indeterminate growth. Developmental Neurobiology, 2017, 77, 1269-1307.	3.0	20
21	Dynamic Neuron-Glia Interactions in an Oscillatory Network Controlling Behavioral Plasticity in the Weakly Electric Fish, Apteronotus leptorhynchus. Frontiers in Physiology, 2017, 8, 1087.	2.8	9
22	Absence of gliosis in a teleost model of spinal cord regeneration. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2016, 202, 445-456.	1.6	15
23	Adult stem cells in the knifefish cerebellum. Developmental Neurobiology, 2015, 75, 39-65.	3.0	27
24	The central nervous system transcriptome of the weakly electric brown ghost knifefish (Apteronotus) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf

25	Regeneration science needs to broaden its focus to understand why some organisms can regenerate and others not. Regenerative Medicine, 2015, 10, 801-803.	1.7	3
26	Matrix metalloproteinase-2 and -9 in the cerebellum of teleost fish: Functional implications for adult neurogenesis. Molecular and Cellular Neurosciences, 2015, 68, 9-23.	2.2	14
27	Collaboration in the competitive world of science: lessons to be learned from William T. Keeton. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2015, 201, 957-960.	1.6	1
28	Cell replacement therapy: Lessons from teleost fish. Experimental Neurology, 2015, 263, 272-276.	4.1	0
29	Large-scale identification of proteins involved in the development of a sexually dimorphic behavior. Journal of Neurophysiology, 2014, 111, 1646-1654.	1.8	23
30	Impact beyond the impact factor. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2014, 200, 113-116.	1.6	38
31	Indeterminate body growth and lack of gonadal decline in the brown ghost knifefish (<i>Apteronotusleptorhynchus</i>), an organism exhibiting negligible brain senescence. Canadian Journal of Zoology, 2014, 92, 947-953.	1.0	28
32	Quantitative analysis reveals dominance of gliogenesis over neurogenesis in an adult brainstem oscillator. Developmental Neurobiology, 2014, 74, 934-952.	3.0	22
33	Ageâ€related changes in stem cell dynamics, neurogenesis, apoptosis, and gliosis in the adult brain: A novel teleost fish model of negligible senescence. Developmental Neurobiology, 2014, 74, 514-530.	3.0	40
34	Undergraduate Research and Inquiry-Based Learning: The Revitalization of the Humboldtian Ideals. Bioscience Education, 2012, 19, 1-11.	0.4	4
35	Teleost Fish as a Model System to Study Successful Regeneration of the Central Nervous System. Current Topics in Microbiology and Immunology, 2012, 367, 193-233.	1.1	53
36	Adult neurogenesis in the brain of the Mozambique tilapia, Oreochromis mossambicus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2012, 198, 427-449.	1.6	26

GüNTHER K H ZUPANC

#	Article	IF	CITATIONS
37	Echo response to chirping in the weaklyÂelectricÂbrownÂghost knifefish (ApteronotusÂleptorhynchus): role of frequency andÂamplitudeÂmodulations. Canadian Journal of Zoology, 2011, 89, 498-508.	1.0	21
38	Spinal cord repair in regeneration-competent vertebrates: Adult teleost fish as a model system. Brain Research Reviews, 2011, 67, 73-93.	9.0	52
39	Adult Neurogenesis in Teleost Fish. , 2011, , 137-167.		12
40	Towards a comparative understanding of adult neurogenesis. European Journal of Neuroscience, 2011, 34, 845-846.	2.6	15
41	Adult neurogenesis and neuronal regeneration in the central nervous system of teleost fish. European Journal of Neuroscience, 2011, 34, 917-929.	2.6	190
42	Effect of temperature on spinal cord regeneration in the weakly electric fish, Apteronotus leptorhynchus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2010, 196, 359-368.	1.6	11
43	Dynamics of caspase-3-mediated apoptosis during spinal cord regeneration in the teleost fish, Apteronotus leptorhynchus. Brain Research, 2009, 1304, 14-25.	2.2	27
44	Structural and functional regeneration after spinal cord injury in the weakly electric teleost fish, Apteronotus leptorhynchus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2009, 195, 699-714.	1.6	46
45	Towards brain repair: Insights from teleost fish. Seminars in Cell and Developmental Biology, 2009, 20, 683-690.	5.0	61
46	Integrative and comparative neurobiology: in memoriam of Theodore H. Bullock (1915–2005). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2008, 194, 113-113.	1.6	0
47	Apoptotic cell death, longâ€ŧerm persistence, and neuronal differentiation of aneuploid cells generated in the adult brain of teleost fish. Developmental Neurobiology, 2008, 68, 1257-1268.	3.0	19
48	Stretching the limits: Stem cells in regeneration science. Developmental Dynamics, 2008, 237, 3648-3671.	1.8	65
49	Adult neurogenesis and neuronal regeneration in the brain of teleost fish. Journal of Physiology (Paris), 2008, 102, 357-373.	2.1	152
50	Numerical chromosome variation and mitotic segregation defects in the adult brain of teleost fish. Developmental Neurobiology, 2007, 67, 1334-1347.	3.0	31
51	Proteomics of traumatic brain injury and regeneration. Proteomics - Clinical Applications, 2007, 1, 1362-1372.	1.6	14
52	Proteome analysis identifies novel protein candidates involved in regeneration of the cerebellum of teleost fish. Proteomics, 2006, 6, 677-696.	2.2	51
53	Theodore H. Bullock (1915–2005). Nature, 2006, 439, 280-280.	27.8	2
54	Electric fish: model systems for neurobiology. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2006, 192, 559-559.	1.6	1

GüNTHER K H ZUPANC

#	Article	IF	CITATIONS
55	Isolation, cultivation, and differentiation of neural stem cells from adult fish brain. Journal of Neuroscience Methods, 2006, 158, 75-88.	2.5	56
56	Upregulation of calbindin-D28k expression during regeneration in the adult fish cerebellum. Brain Research, 2006, 1095, 26-34.	2.2	26
57	New neurons for the injured brain: mechanisms of neuronal regeneration in adult teleost fish. Regenerative Medicine, 2006, 1, 207-216.	1.7	58
58	Proliferation, migration, neuronal differentiation, and long-term survival of new cells in the adult zebrafish brain. Journal of Comparative Neurology, 2005, 488, 290-319.	1.6	328
59	From Electrogenesis to Electroreception: An Overview. , 2005, , 5-46.		40
60	Potential role of radial glia in adult neurogenesis of teleost fish. Glia, 2003, 43, 77-86.	4.9	108
61	Temperature Dependence of the Electric Organ Discharge in Weakly Electric Fish. , 2003, , 85-94.		7
62	Spatio-Temporal Distribution of Microglia/Macrophages during Regeneration in the Cerebellum of Adult Teleost Fish, <i>Apteronotus leptorhynchus:</i> A Quantitative Analysis. Brain, Behavior and Evolution, 2003, 62, 31-42.	1.7	42
63	Up-regulation of vimentin expression during regeneration in the adult fish brain. NeuroReport, 2002, 13, 317-320.	1.2	19
64	Light–dark-controlled changes in modulations of the electric organ discharge in the teleost Apteronotus leptorhynchus. Animal Behaviour, 2001, 62, 1119-1128.	1.9	25
65	Neuronal regeneration in the cerebellum of adult teleost fish, Apteronotus leptorhynchus: guidance of migrating young cells by radial glia. Developmental Brain Research, 2001, 130, 15-23.	1.7	67
66	Adult Neurogenesis and Neuronal Regeneration in the Central Nervous System of Teleost Fish. Brain, Behavior and Evolution, 2001, 58, 250-275.	1.7	141
67	A Comparative Approach towards the Understanding of Adult Neurogenesis. Brain, Behavior and Evolution, 2001, 58, 246-249.	1.7	44
68	Molecular Cloning and Pharmacological Characterization of a Somatostatin Receptor Subtype in the Gymnotiform Fish Apteronotus albifrons. General and Comparative Endocrinology, 1999, 115, 333-345.	1.8	30
69	Up-regulation of somatostatin after lesions in the cerebellum of the teleost fish Apteronotus leptorhynchus. Neuroscience Letters, 1999, 268, 135-138.	2.1	20
70	Cell Proliferation after Lesions in the Cerebellum of Adult Teleost Fish: Time Course, Origin, and Type of New Cells Produced. Experimental Neurology, 1999, 160, 78-87.	4.1	108
71	Characterisation of the fish sst3 receptor, a member of the SRIF1 receptor family: atypical pharmacological features. Neuropharmacology, 1999, 38, 449-462.	4.1	30
72	An in vitro technique for tracing neuronal connections in the teleost brain. Brain Research Protocols, 1998, 3, 37-51.	1.6	30

Günther K H Zupanc

#	Article	IF	CITATIONS
73	Apoptosis after Injuries in the Cerebellum of Adult Teleost Fish. Experimental Neurology, 1998, 152, 221-230.	4.1	75
74	Long-term survival of postembryonically born cells in the cerebellum of gymnotiform fish, Apteronotus leptorhynchus. Neuroscience Letters, 1997, 221, 185-188.	2.1	47
75	Apoptosis in the cerebellum of adult teleost fish, Apteronotus leptorhynchus. Developmental Brain Research, 1996, 97, 279-286.	1.7	61
76	Postembryonic development of the cerebellum in gymnotiform fish. Journal of Comparative Neurology, 1996, 370, 443-464.	1.6	92
77	Peptidergic transmission: From morphological correlates to functional implications. Micron, 1996, 27, 35-91.	2.2	125
78	Proliferation zones in the brain of adult gymnotiform fish: A quantitative mapping study. Journal of Comparative Neurology, 1995, 353, 213-233.	1.6	244
79	Apoptosis as a regulator of cell proliferation in the central posterior/prepacemaker nucleus of adult gymnotiform fish, Apteronotus leptorhynchus. Neuroscience Letters, 1995, 202, 133-136.	2.1	37
80	Evoked chirping in the weakly electric fish <i>Apteronotus leptorhynchus</i> : a quantitative biophysical analysis. Canadian Journal of Zoology, 1993, 71, 2301-2310.	1.0	136