
Paul morgan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1779755/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The density structure of subcontinental lithosphere through time. Earth and Planetary Science Letters, 2001, 184, 605-621.	1.8	382
2	Continental extension, magmatism and elevation; formal relations and rules of thumb. Tectonophysics, 1990, 174, 39-62.	0.9	299
3	Initial results from the InSight mission on Mars. Nature Geoscience, 2020, 13, 183-189.	5.4	274
4	Are Lithospheres Forever? Tracking Changes in Subcontinental Lithospheric Mantle Through Time. GSA Today, 2001, 11, 4.	1.1	242
5	Heat flow from a scientific research well at Cajon Pass, California. Journal of Geophysical Research, 1992, 97, 5017-5030.	3.3	152
6	The thermal structure and thermal evolution of the continental lithosphere. Physics and Chemistry of the Earth, 1984, 15, 107-193.	0.3	151
7	Heat production in an Archean crustal profile and implications for heat flow and mobilization of heat-producing elements. Earth and Planetary Science Letters, 1987, 85, 439-450.	1.8	142
8	Cenozoic thermal, mechanical and tectonic evolution of the Rio Grande Rift. Journal of Geophysical Research, 1986, 91, 6263-6276.	3.3	124
9	Constraints on rift thermal processes from heat flow and uplift. Tectonophysics, 1983, 94, 277-298.	0.9	120
10	The Heat Flow and Physical Properties Package (HP3) for the InSight Mission. Space Science Reviews, 2018, 214, 1.	3.7	105
11	Hot spot heat transfer: Its application to Venus and implications to Venus and Earth. Journal of Geophysical Research, 1983, 88, 8305-8317.	3.3	101
12	Crustal radiogenic heat production and the selective survival of ancient continental crust. Journal of Geophysical Research, 1985, 90, C561.	3.3	100
13	Heat flow measurements in Yellowstone Lake and the thermal structure of the Yellowstone Caldera. Journal of Geophysical Research, 1977, 82, 3719-3732.	3.3	97
14	Seismicity and active tectonics of the Egyptian Red Sea margin and the northern Red Sea. Tectonophysics, 1986, 125, 313-324.	0.9	96
15	Thermal regime of the continental lithosphere. Journal of Geodynamics, 1984, 1, 143-166.	0.7	95
16	Crustal structure of the southern Rio Grande Rift determined from seismic refraction profiling. Journal of Geophysical Research, 1986, 91, 6143-6156.	3.3	91
17	Heat flow in Eastern Egypt: The thermal signature of a continental breakup. Journal of Geodynamics, 1985, 4, 107-131.	0.7	90
18	On the Cenozoic uplift and tectonic stability of the Colorado Plateau. Journal of Geodynamics, 1985, 3, 39-63.	0.7	88

PAUL MORGAN

#	Article	IF	CITATIONS
19	Geology and Physical Properties Investigations by the InSight Lander. Space Science Reviews, 2018, 214, 1.	3.7	77
20	Crustal structure, geophysical models and contemporary tectonism of the colorado plateau. Tectonophysics, 1979, 61, 131-147.	0.9	75
21	Introduction—processes of continental rifting. Tectonophysics, 1983, 94, 1-10.	0.9	72
22	Thermal regime of the southern Basin and Range Province: 1. Heat flow data from Arizona and the Mojave Desert of California and Nevada. Journal of Geophysical Research, 1994, 99, 22093-22119.	3.3	66
23	Rio Grande Rift in Southern New Mexico, West Texas, and Northern Chihuahua. Special Publications, 2013, , 87-106.	0.0	60
24	Deep Space 2: The Mars Microprobe Mission. Journal of Geophysical Research, 1999, 104, 27013-27030.	3.3	58
25	A Pre-Landing Assessment of Regolith Properties at the InSight Landing Site. Space Science Reviews, 2018, 214, 1.	3.7	58
26	The linear relation between temperatures based on the silica content of groundwater and regional heat flow: A new heat flow map of the United States. Pure and Applied Geophysics, 1978, 117, 227-241.	0.8	56
27	Continental rifting: Progress and outlook. Eos, 1981, 62, 585-586.	0.1	54
28	Lithospheric thinning associated with rifting in East Africa. Nature, 1982, 298, 734-736.	13.7	54
29	Chapter 23: Heat flow and thermal regimes in the continental United States. Memoir of the Geological Society of America, 1989, , 493-522.	0.5	52
30	Heat flow in rift zones. Geodynamic Series, 1982, , 107-122.	0.1	51
31	Crustal structure, gravity anomalies and heat flow in the southern Rio Grande rift and their relationship to extensional tectonics. Tectonophysics, 1990, 174, 21-37.	0.9	48
32	Heat flow in the Kenya rift zone. Tectonophysics, 1994, 236, 131-149.	0.9	48
33	The tensile strength of the lithosphere and the localization of extension. Geological Society Special Publication, 1987, 28, 53-65.	0.8	47
34	REGIONAL GEOTHERMAL EXPLORATION IN EGYPT*. Geophysical Prospecting, 1983, 31, 361-376.	1.0	45
35	Physical changes in the lithosphere associated with thermal relaxation after rifting. Tectonophysics, 1987, 143, 1-11.	0.9	41
36	Geothermal potential of Egypt. Tectonophysics, 1983, 96, 77-94.	0.9	37

PAUL MORGAN

#	Article	IF	CITATIONS
37	Thermal regime of the southern Basin and Range Province: 2. Implications of heat flow for regional extension and metamorphic core complexes. Journal of Geophysical Research, 1994, 99, 22121-22133.	3.3	33
38	Heat flow and the geothermal potential of Egypt. Pure and Applied Geophysics, 1978, 117, 213-226.	0.8	31
39	The silica heat flow interpretation technique: Assumptions and applications. Journal of Geophysical Research, 1980, 85, 7206-7214.	3.3	31
40	Diamond exploration from the bottom up: regional geophysical signatures of lithosphere conditions favorable for diamond exploration. Journal of Geochemical Exploration, 1995, 53, 145-165.	1.5	28
41	Constraints on the age of heating at the Fenton Hill Site, Valles Caldera, New Mexico. Journal of Geophysical Research, 1986, 91, 1899-1908.	3.3	26
42	Neogene vertical movements and constraints on extension in the Catalan Coastal Ranges, Iberian Peninsula, and the Valencia trough (western Mediterranean). Tectonophysics, 1992, 203, 185-201.	0.9	26
43	Introduction: Background and implications of the linear heat flowâ€heat production relationship. Geophysical Research Letters, 1987, 14, 248-251.	1.5	24
44	Intracontinental rift comparisons: Baikal and Rio Grande Rift Systems. Eos, 1989, 70, 578.	0.1	23
45	Thermal Conductivity of the Martian Soil at the InSight Landing Site From HP ³ Active Heating Experiments. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006861.	1.5	23
46	Structure of the southern Rio Grande Rift from gravity interpretation. Journal of Geophysical Research, 1986, 91, 6157-6167.	3.3	22
47	Conductive heat flux in VCâ€1 and the thermal regime of Valles Caldera, Jemez Mountains, New Mexico. Journal of Geophysical Research, 1988, 93, 6027-6039.	3.3	22
48	Chapter 5 The east african rift system. Developments in Geotectonics, 2006, 25, 213-III.	0.3	22
49	Probing magnetic bottom and crustal temperature variations along the Red Sea margin of Egypt. Tectonophysics, 2011, 510, 337-344.	0.9	21
50	Geotherms from the temperature-depth–constrained solutions of 1-D steady-state heat-flow equation. , 2016, 12, 1187-1197.		21
51	Continuation of heat flow data: A method to construct isotherms in geothermal areas. Geophysics, 1981, 46, 1732-1744.	1.4	16
52	Chapter 1 Introduction: Progress in understanding continental rifts. Developments in Geotectonics, 2006, 25, 3-26.	0.3	16
53	Tectonics and heat sources for granulite metamorphism of supracrustal-bearing terranes. Precambrian Research, 1992, 55, 525-538.	1.2	15
54	Earthquake cannons in the Egyptian Eastern Desert. Bulletin of the Seismological Society of America, 1981, 71, 551-554.	1.1	15

PAUL MORGAN

#	Article	IF	CITATIONS
55	Porosity determinations and the thermal conductivity of rock fragments with application to heat flow on Cyprus. Earth and Planetary Science Letters, 1975, 26, 253-262.	1.8	12
56	Collisional plateaus. Tectonophysics, 1985, 119, 137-151.	0.9	11
57	Silica heat flow estimates and heat flow in the Colorado Plateau and adjacent areas. Journal of Geodynamics, 1985, 3, 65-85.	0.7	10
58	Microearthquake studies in Egypt carried out by the geological survey of Egypt. Journal of Geodynamics, 1987, 7, 227-249.	0.7	9
59	Potential Effects of Surface Temperature Variations and Disturbances and Thermal Convection on the Mars InSight HP3 Heat-Flow Determination. Space Science Reviews, 2017, 211, 277-313.	3.7	9
60	Cyprus Heat Flow with Comments on the Thermal Regime of the Eastern Mediterranean. , 1979, , 144-151.		6
61	Constraints on Rift Thermal Processes from Heat Flow and Uplift. Developments in Geotectonics, 1983, 19, 277-298.	0.3	5
62	Introduction—Processes of Continental Rifting. Developments in Geotectonics, 1983, 19, 1-10.	0.3	4
63	Geothermal Energy on Mars. , 2009, , 331-349.		3
64	Chapter 8 The baikal rift system. Developments in Geotectonics, 2006, , 325-341.	0.3	2
65	A simple model of gravitationally-driven water flow in a semicircular aquifer to estimate geothermal power potential: Examples from Arizona and Colorado. Geothermics, 2016, 64, 28-41.	1.5	2
66	Comment and Reply on "Uplift rate of Adirondack anorthosite measured by fission-track analysis of apatite― Geology, 1984, 12, 124.	2.0	1
67	Evaluation of the thermal regime of the Valles Caldera, New Mexico, U.S.A., by downward continuation of temperature data. Tectonophysics, 1987, 134, 339-345.	0.9	1
68	Of the Earth, Spheres, and Consequences. Eos, 2002, 83, 94.	0.1	1
69	Chapter 3D Heat flow in rifts. Developments in Geotectonics, 2006, , 99-101.	0.3	1
70	A deep look at African rifting. Nature, 1991, 354, 188-189.	13.7	0
71	Continental Heat Flowâ [~] †. , 2014, , .		0
72	Heat Flow, Continental. Encyclopedia of Earth Sciences Series, 2021, , 727-736.	0.1	0

#	Article	IF	CITATIONS
73	Heat Flow. , 2003, , 265-278.		о
74	Heat Flow, Continental. Encyclopedia of Earth Sciences Series, 2020, , 1-9.	0.1	0