
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1779747/publications.pdf Version: 2024-02-01

SANZHONG LUO

#	Article	IF	CITATIONS
1	Catalytic Asymmetric Addition and Telomerization of Butadiene with Enamine Intermediates. CCS Chemistry, 2022, 4, 2267-2275.	7.8	13
2	Asymmetric Coupling of β-Ketocarbonyls and Alkynes by Chiral Primary Amine/Rh Synergistic Catalysis. Organic Letters, 2022, 24, 1186-1189.	4.6	9
3	Catalytic asymmetric oxidative sulfenylation of β-ketocarbonyls using a chiral primary amine. Organic Chemistry Frontiers, 2022, 9, 1276-1281.	4.5	4
4	Bio-inspired lanthanum-ortho-quinone catalysis for aerobic alcohol oxidation: semi-quinone anionic radical as redox ligand. Nature Communications, 2022, 13, 428.	12.8	14
5	Bond Energies of Enamines. ACS Omega, 2022, 7, 6354-6374.	3.5	6
6	Deracemization through photochemical <i>E</i> / <i>Z</i> isomerization of enamines. Science, 2022, 375, 869-874.	12.6	62
7	Highly Stereoselective Construction of β,β-Diaryl-α-Branched Ketones by the Chiral Primary Amine-Catalyzed Asymmetric Retro-Claisen Reaction. Organic Letters, 2022, 24, 1752-1756.	4.6	7
8	An Ensemble Structure and Physicochemical (SPOC) Descriptor for Machineâ€Learning Prediction of Chemical Reaction and Molecular Properties. ChemPhysChem, 2022, 23, e202200255.	2.1	12
9	Asymmetric C–H Dehydrogenative Allylic Alkylation by Ternary Photoredox-Cobalt-Chiral Primary Amine Catalysis under Visible Light. Journal of the American Chemical Society, 2022, 144, 10705-10710.	13.7	28
10	Photoredox-Mediated Asymmetric Cross-Dehydrogenative Coupling of Enones and Tertiary Amines by Chiral Primary Amine Catalysis. Synthesis, 2021, 53, 2809-2818.	2.3	5
11	Catalytic Asymmetric Disulfuration by a Chiral Bulky Threeâ€Component Lewis Acidâ€Base. Angewandte Chemie, 2021, 133, 11066-11071.	2.0	8
12	Catalytic Asymmetric Disulfuration by a Chiral Bulky Threeâ€Component Lewis Acidâ€Base. Angewandte Chemie - International Edition, 2021, 60, 10971-10976.	13.8	33
13	Amine/ketone cooperative catalysis with H2O2. Trends in Chemistry, 2021, 3, 892-893.	8.5	0
14	Chiral Primary Amine/Ketone Cooperative Catalysis for Asymmetric α-Hydroxylation with Hydrogen Peroxide. Journal of the American Chemical Society, 2021, 143, 1078-1087.	13.7	34
15	Holistic Prediction of the p <i>K</i> _a in Diverse Solvents Based on a Machineâ€Learning Approach. Angewandte Chemie - International Edition, 2020, 59, 19282-19291.	13.8	116
16	Holistic Prediction of the p <i>K</i> _a in Diverse Solvents Based on a Machineâ€Learning Approach. Angewandte Chemie, 2020, 132, 19444-19453.	2.0	31
17	Collective enantioselective total synthesis of (+)-sinensilactam A, (+)-lingzhilactone B and (â~')-lingzhiol: divergent reactivity of styrene. Chemical Communications, 2020, 56, 10066-10069.	4.1	13
18	Indoline Catalyzed Acylhydrazone/Oxime Condensation under Neutral Aqueous Conditions. Organic Letters, 2020, 22, 6035-6040.	4.6	15

#	Article	IF	CITATIONS
19	Chiral Primary Amine-Catalyzed Divergent Coupling of α-Substituted Acrylaldehydes with α-Diazoesters. ACS Catalysis, 2020, 10, 10989-10998.	11.2	13
20	Tailoring radicals by asymmetric electrochemical catalysis. Organic Chemistry Frontiers, 2020, 7, 2997-3000.	4.5	14
21	Photo-mediated [1, 3]-Carbonyl shift of β-Ketocarbonyls. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 396, 112553.	3.9	1
22	Catalytic Asymmetric Electrochemical αâ€Arylation of Cyclic βâ€Ketocarbonyls with Anodic Benzyne Intermediates. Angewandte Chemie - International Edition, 2020, 59, 14347-14351.	13.8	70
23	Catalytic Asymmetric Electrochemical αâ€Arylation of Cyclic βâ€Ketocarbonyls with Anodic Benzyne Intermediates. Angewandte Chemie, 2020, 132, 14453-14457.	2.0	11
24	Ï€-Coordinating Chiral Primary Amine/Palladium Synergistic Catalysis for Asymmetric Allylic Alkylation. Journal of the American Chemical Society, 2020, 142, 3184-3195.	13.7	65
25	Application of Machine Learning in Organic Chemistry. Chinese Journal of Organic Chemistry, 2020, 40, 3812.	1.3	10
26	Enantioselective Diels–Alder reaction of anthracene by chiral tritylium catalysis. Beilstein Journal of Organic Chemistry, 2019, 15, 1304-1312.	2.2	16
27	Frontispiece: Asymmetric Electrochemical Catalysis. Chemistry - A European Journal, 2019, 25, .	3.3	Ο
28	Dynamic multiphase semi-crystalline polymers based on thermally reversible pyrazole-urea bonds. Nature Communications, 2019, 10, 4753.	12.8	86
29	Redox Property of Enamines. Journal of Organic Chemistry, 2019, 84, 12071-12090.	3.2	34
30	Asymmetric Retro-Claisen Reaction by Synergistic Chiral Primary Amine/Palladium Catalysis. Organic Letters, 2019, 21, 7258-7261.	4.6	11
31	Enantioselective Oxidative Coupling of β-Ketocarbonyls and Anilines by Joint Chiral Primary Amine and Selenium Catalysis. Organic Letters, 2019, 21, 8178-8182.	4.6	13
32	Asymmetric Electrochemical Catalysis. Chemistry - A European Journal, 2019, 25, 10033-10044.	3.3	112
33	Photoredox Mediated Acceptorless Dehydrogenative Coupling of Saturated N-Heterocycles. ACS Catalysis, 2019, 9, 3589-3594.	11.2	42
34	Asymmetric 1,3â€Dipolar Cycloaddition Reactions of Enones by Primary Amine Catalysis. Asian Journal of Organic Chemistry, 2019, 8, 1049-1052.	2.7	4
35	Mechanistic Studies on Bioinspired Aerobic C–H Oxidation of Amines with an <i>ortho</i> -Quinone Catalyst. Journal of Organic Chemistry, 2019, 84, 2542-2555.	3.2	30
36	Steric Effect of Protonated Tertiary Amine in Primary–Tertiary Diamine Catalysis: A Double-Layered Sterimol Model. Organic Letters, 2019, 21, 407-411.	4.6	22

#	Article	IF	CITATIONS
37	Catalytic Asymmetric β-C–H Functionalizations of Ketones via Enamine Oxidation. Organic Letters, 2018, 20, 1672-1675.	4.6	24
38	Bio-inspired quinone catalysis. Chinese Chemical Letters, 2018, 29, 1193-1200.	9.0	29
39	Aromatic Aminocatalysis. Chemistry - an Asian Journal, 2018, 13, 740-753.	3.3	14
40	Enantioselective indium(<scp>i</scp>)-catalyzed [4 + 2] annulation of alkoxyallenes and β,γ-unsaturated α-keto esters. Organic Chemistry Frontiers, 2018, 5, 1787-1791.	4.5	15
41	Electrochemical Generation of Diaza-oxyallyl Cation for Cycloaddition in an All-Green Electrolytic System. Organic Letters, 2018, 20, 1324-1327.	4.6	41
42	Visible Light Promoted βâ€C—H Alkylation of βâ€Ketocarbonyls <i>via</i> a βâ€Enaminyl Radical Intermediate. Chinese Journal of Chemistry, 2018, 36, 311-320.	4.9	13
43	Catalytic asymmetric enamine protonation reaction. Organic and Biomolecular Chemistry, 2018, 16, 510-520.	2.8	19
44	Catalytic Desymmetrizing Dehydrogenation of 4â€ 6 ubstituted Cyclohexanones through Enamine Oxidation. Angewandte Chemie, 2018, 130, 2275-2280.	2.0	7
45	Catalytic Desymmetrizing Dehydrogenation of 4‣ubstituted Cyclohexanones through Enamine Oxidation. Angewandte Chemie - International Edition, 2018, 57, 2253-2258.	13.8	36
46	Catalytic Asymmetric Oxidative Enamine Transformations. ACS Catalysis, 2018, 8, 5466-5484.	11.2	60
47	Asymmetric αâ€Alkylation of βâ€Ketocarbonyls via Direct Phenacyl Bromide Photolysis by Chiral Primary Amine. Chinese Journal of Chemistry, 2018, 36, 716-722.	4.9	11
48	Carbocation Lewis Acid Catalyzed Diels–Alder Reactions of Anthracene Derivatives. Organic Letters, 2018, 20, 2269-2272.	4.6	34
49	Organocatalytic Electrochemical C–H Lactonization of Aromatic Carboxylic Acids. Synthesis, 2018, 50, 2924-2929.	2.3	32
50	Asymmetric Fluorination of α-Branched Aldehydes by Chiral Primary Amine Catalysis: Reagent-Controlled Enantioselectivity Switch. Journal of Organic Chemistry, 2018, 83, 4250-4256.	3.2	21
51	Visible-light promoted arene C–H/C–X lactonization <i>via</i> carboxylic radical aromatic substitution. Organic Chemistry Frontiers, 2018, 5, 237-241.	4.5	39
52	Catalytic Asymmetric Mannich Type Reaction with Tri-/Difluoro- or Trichloroacetaldimine Precursors. Organic Letters, 2018, 20, 7137-7140.	4.6	19
53	Catalytic enantioselective α-sulfenylation of β-ketocarbonyls by chiral primary amines. Organic Chemistry Frontiers, 2018, 5, 2313-2316.	4.5	22
54	Aniline Catalysis in Bioconjugations and Material Synthesis. Chinese Journal of Organic Chemistry, 2018, 38, 1.	1.3	4

#	Article	IF	CITATIONS
55	Rational Design of Chiral Catalysts Based on Experimental Data and Reaction Mechanism. Chinese Journal of Organic Chemistry, 2018, 38, 2363.	1.3	2
56	Visibleâ€Lightâ€Promoted Asymmetric Crossâ€Dehydrogenative Coupling of Tertiary Amines to Ketones by Synergistic Multiple Catalysis. Angewandte Chemie - International Edition, 2017, 56, 3694-3698.	13.8	208
57	Visible-Light-Promoted Asymmetric Cross-Dehydrogenative Coupling of Tertiary Amines to Ketones by Synergistic Multiple Catalysis. Angewandte Chemie, 2017, 129, 3748-3752.	2.0	47
58	Enantioselective Terminal Addition to Allenes by Dual Chiral Primary Amine/Palladium Catalysis. Journal of the American Chemical Society, 2017, 139, 3631-3634.	13.7	112
59	Organocatalysis in Inert C–H Bond Functionalization. Chemical Reviews, 2017, 117, 9433-9520.	47.7	578
60	A chiral ion-pair photoredox organocatalyst: enantioselective anti-Markovnikov hydroetherification of alkenols. Organic Chemistry Frontiers, 2017, 4, 1037-1041.	4.5	48
61	Catalytic Asymmetric Electrochemical Oxidative Coupling of Tertiary Amines with Simple Ketones. Organic Letters, 2017, 19, 2122-2125.	4.6	153
62	Divergent Coupling of β,γ-Unsaturated α-Ketoesters with Simple Olefins: Vinylation and [2 + 2] Cycloaddition. Organic Letters, 2017, 19, 3366-3369.	4.6	12
63	Enantio- and Diastereoselective Cyclopropanation of β,γ-Unsaturated α-Ketoester by a Chiral Phosphate/Indium(III) Complex. Organic Letters, 2017, 19, 3331-3334.	4.6	32
64	Chiral Primary Amine Catalyzed Asymmetric αâ€Benzylation with In Situ Generated <i>ortho</i> â€Quinone Methides. Chemistry - A European Journal, 2017, 23, 1253-1257.	3.3	26
65	Catalytic Asymmetric Mannich Reaction with N arbamoyl Imine Surrogates of Formaldehyde and Glyoxylate. Angewandte Chemie, 2017, 129, 14002-14006.	2.0	11
66	Oxidative Synthesis of Benzimidazoles, Quinoxalines, and Benzoxazoles from Primary Amines by <i>ortho</i> -Quinone Catalysis. Organic Letters, 2017, 19, 5629-5632.	4.6	83
67	Catalytic Asymmetric Mannich Reaction with N arbamoyl Imine Surrogates of Formaldehyde and Glyoxylate. Angewandte Chemie - International Edition, 2017, 56, 13814-13818.	13.8	50
68	Enantioselective Decarboxylative α-Alkynylation of β-Ketocarbonyls via a Catalytic α-Imino Radical Intermediate. Organic Letters, 2017, 19, 4924-4927.	4.6	56
69	Catalytic Regio―and Enantioselective [4+2] Annulation Reactions of Nonâ€activated Allenes by a Chiral Cationic Indium Complex. Angewandte Chemie, 2017, 129, 11007-11011.	2.0	2
70	Catalytic Regio―and Enantioselective [4+2] Annulation Reactions of Nonâ€activated Allenes by a Chiral Cationic Indium Complex. Angewandte Chemie - International Edition, 2017, 56, 10867-10871.	13.8	37
71	Photo-induced Catalytic Asymmetric Free Radical Reactions. Acta Chimica Sinica, 2017, 75, 22.	1.4	20
72	Oxidative Radical Addition–Cyclization of Sulfonyl Hydrazones with Simple Olefins by Binary Acid Catalysis. Organic Letters, 2016, 18, 3150-3153.	4.6	29

#	Article	IF	CITATIONS
73	Visible-light promoted intermolecular halofunctionalization of alkenes with N-halogen saccharins. Organic Chemistry Frontiers, 2016, 3, 447-452.	4.5	30
74	Asymmetric Retro-Claisen Reaction by Chiral Primary Amine Catalysis. Journal of the American Chemical Society, 2016, 138, 3978-3981.	13.7	74
75	Reagent-controlled enantioselectivity switch for the asymmetric fluorination of β-ketocarbonyls by chiral primary amine catalysis. Chemical Science, 2016, 8, 621-626.	7.4	57
76	Carbocation Lewis Acid Catalyzed Redox-Neutral α-C(sp ³)H Arylation of Amines. Acta Chimica Sinica, 2016, 74, 61.	1.4	13
77	Copperâ€Catalyzed Aerobic Autoxidation of <i>N</i> â€Hydroxycarbamates Probed by Mass Spectrometry. Chemistry - A European Journal, 2015, 21, 14630-14637.	3.3	8
78	Chiral Primary Amine/Palladium Dual Catalysis for Asymmetric Allylic Alkylation of βâ€Ketocarbonyl Compounds with Allylic Alcohols. Angewandte Chemie - International Edition, 2015, 54, 12645-12648.	13.8	103
79	[4 + 2] Cycloaddition of in Situ Generated 1,2-Diaza-1,3-dienes with Simple Olefins: Facile Approaches to Tetrahydropyridazines. Organic Letters, 2015, 17, 1561-1564.	4.6	76
80	Catalytic Asymmetric Oxidative α-C–H N,O-Ketalization of Ketones by Chiral Primary Amine. Organic Letters, 2015, 17, 4392-4395.	4.6	19
81	Chiral Primary Amine Catalyzed Asymmetric Michael Addition of Malononitrile to α-Substituted Vinyl Ketone. Organic Letters, 2015, 17, 382-385.	4.6	22
82	Asymmetric α-Benzoyloxylation of β-Ketocarbonyls by a Chiral Primary Amine Catalyst. Organic Letters, 2015, 17, 576-579.	4.6	43
83	Redox Tuning of a Direct Asymmetric Aldol Reaction. Angewandte Chemie - International Edition, 2015, 54, 5210-5213.	13.8	42
84	Bioinspired Organocatalytic Aerobic C–H Oxidation of Amines with an <i>ortho</i> -Quinone Catalyst. Organic Letters, 2015, 17, 1469-1472.	4.6	84
85	Pushing the Limits of Aminocatalysis: Enantioselective Transformations of α-Branched β-Ketocarbonyls and Vinyl Ketones by Chiral Primary Amines. Accounts of Chemical Research, 2015, 48, 986-997.	15.6	142
86	Chiral Primary Amine Catalyzed Asymmetric Tandem Reduction–Michael Addition–Protonation Reaction between Alkylidene Meldrum's Acid and α-Substituted Vinyl Ketones. Synthesis, 2015, 47, 2207-2216.	2.3	10
87	Organic Photocatalytic Cyclization of Polyenes: A Visible‣ightâ€Mediated Radical Cascade Approach. Chemistry - A European Journal, 2015, 21, 14723-14727.	3.3	28
88	Asymmetric Latent Carbocation Catalysis with Chiral Trityl Phosphate. Journal of the American Chemical Society, 2015, 137, 15576-15583.	13.7	67
89	Visibleâ€Light Promoted Catalystâ€Free Imidation of Arenes and Heteroarenes. Chemistry - A European Journal, 2014, 20, 14231-14234.	3.3	124
90	Primaryâ€Tertiary Diamine/BrâŠ~nsted Acid Catalyzed <i>α</i> â€Allylation of Carbonyl Compounds with Allylic Alcohols. Chinese Journal of Chemistry, 2014, 32, 673-677.	4.9	2

#	Article	IF	CITATIONS
91	Origins of the Enantio―and N/Oâ€Selectivity in the Primaryâ€Amineâ€Catalyzed Hydroxyamination of 1,3â€Dicarbonyl Compounds with Inâ€Situâ€Formed Nitrosocarbonyl Compounds: A Theoretical Study. Chemistry - an Asian Journal, 2014, 9, 3565-3571.	3.3	27
92	Merging Aerobic Oxidation and Enamine Catalysis in the Asymmetric αâ€Amination of βâ€Ketocarbonyls Using <i>N</i> â€Hydroxycarbamates as Nitrogen Sources. Angewandte Chemie - International Edition, 2014, 53, 4149-4153.	13.8	106
93	Catalytic asymmetric α-C(sp3)–H functionalization of amines. Tetrahedron Letters, 2014, 55, 551-558.	1.4	101
94	Asymmetric Enamine Catalysis with β-Ketoesters by Chiral Primary Amine: Divergent Stereocontrol Modes. Journal of Organic Chemistry, 2014, 79, 11517-11526.	3.2	45
95	Direct Intramolecular Conjugate Addition of Simple Alkenes to α,β-Unsaturated Carbonyls Catalyzed by Cu(OTf)2. Organic Letters, 2014, 16, 5032-5035.	4.6	29
96	Chiral primary amine catalysed asymmetric conjugate addition of azoles to α-substituted vinyl ketones. Organic Chemistry Frontiers, 2014, 1, 68-72.	4.5	29
97	Asymmetric Sulfa-Michael Addition to α-Substituted Vinyl Ketones Catalyzed by Chiral Primary Amine. Organic Letters, 2014, 16, 4626-4629.	4.6	42
98	Asymmetric α-Photoalkylation of β-Ketocarbonyls by Primary Amine Catalysis: Facile Access to Acyclic All-Carbon Quaternary Stereocenters. Journal of the American Chemical Society, 2014, 136, 14642-14645.	13.7	196
99	Synergistic Pd/Enamine Catalysis: A Strategy for the C–H/C–H Oxidative Coupling of Allylarenes with Unactivated Ketones. Organic Letters, 2014, 16, 3584-3587.	4.6	68
100	Taming Living Carbocations in Catalytic Direct Conjugate Addition of Simple Alkenes to α,βâ€Enones. Chemistry - A European Journal, 2014, 20, 8293-8296.	3.3	21
101	Enantioselective Organocatalytic Conjugate Addition of Alkenes to α,βâ€Enones. European Journal of Organic Chemistry, 2014, 2014, 3540-3545.	2.4	15
102	Counteranions of In(â¢) Induced Reversal of Enantiocontrol in Friedel-Crafts Reaction of Indoles by Asymmetric Binary Acid Catalysis. Acta Chimica Sinica, 2014, 72, 809.	1.4	14
103	Switchable Diastereoselectivity in Enantioselective [4+2] Cycloadditions with Simple Olefins by Asymmetric Binary Acid Catalysis. Angewandte Chemie - International Edition, 2013, 52, 9786-9790.	13.8	86
104	In(III)/PhCO ₂ H Binary Acid Catalyzed Tandem [2 + 2] Cycloaddition and Nazarov Reaction between Alkynes and Acetals. Organic Letters, 2013, 15, 4496-4499.	4.6	41
105	Asymmetric binary acid catalysis: chiral phosphoric acid as dual ligand and acid. Chemical Communications, 2013, 49, 847-858.	4.1	104
106	Catalytic Nazarov Reaction of Aryl Vinyl Ketones via Binary Acid Strategy. Journal of Organic Chemistry, 2013, 78, 606-613.	3.2	35
107	Primary–Tertiary Diamine/BrÃ,nsted Acid Catalyzed C–C Coupling between <i>para</i> â€Vinylanilines and Aldehydes. Chemistry - A European Journal, 2013, 19, 9481-9484.	3.3	17
108	A Practical Protocol for Asymmetric Synthesis of Wieland-Miescher and Hajos-Parrish Ketones Catalyzed by a Simple Chiral Primary Amine. Synthesis, 2013, 45, 1939-1945.	2.3	26

#	Article	lF	CITATIONS
109	Chiral Primaryâ€Amineâ€Catalyzed Conjugate Addition to αâ€Substituted Vinyl Ketones/Aldehydes: Divergent Stereocontrol Modes on Enamine Protonation. Chemistry - A European Journal, 2013, 19, 15669-15681.	3.3	28
110	Bio-inspired Chiral Primary Amine Catalysis. Synlett, 2012, 23, 1575-1589.	1.8	40
111	Theoretical Studies of the Asymmetric Binaryâ€Acidâ€Catalyzed <i>tert</i> â€Aminocyclization Reaction: Origins of the CH Activation and Stereoselectivity. Chemistry - an Asian Journal, 2012, 7, 2569-2576.	3.3	62
112	Catalytic Enantioselective <i>tert</i> â€Aminocyclization by Asymmetric Binary Acid Catalysis (ABC): Stereospecific 1,5â€Hydrogen Transfer. Chemistry - A European Journal, 2012, 18, 8891-8895.	3.3	124
113	Asymmetric Binaryâ€Acid Catalysis with InBr ₃ in the Inverseâ€Electronâ€Demanding Heteroâ€Diels–Alder Reaction of Mono―and Bisâ€Substituted Cyclopentadienes: Remote Fluoroâ€Effect on Stereocontrol. Chemistry - A European Journal, 2012, 18, 799-803.	3.3	63
114	Asymmetric Binary-Acid Catalysis in the Inverse-Electron-Demanding Hetero-Diels-Alder Reaction of 3,4-Dihydro-2H-Pyran. Acta Chimica Sinica, 2012, 70, 1518.	1.4	20
115	Non-covalent immobilization of asymmetric organocatalysts. Catalysis Science and Technology, 2011, 1, 507.	4.1	60
116	Chiral Primary Amine Catalyzed Asymmetric Direct Crossâ€Aldol Reaction of Acetaldehyde. European Journal of Organic Chemistry, 2011, 2011, 3347-3352.	2.4	46
117	Asymmetric Binary Acid Catalysis: A Regioselectivity Switch between Enantioselective 1,2―and 1,4â€Addition through Different Counteranions of In ^{III} . Angewandte Chemie - International Edition, 2011, 50, 6610-6614.	13.8	107
118	Chiral Primary Amine Catalyzed Enantioselective Protonation via an Enamine Intermediate. Angewandte Chemie - International Edition, 2011, 50, 11451-11455.	13.8	75
119	Chiral pyrrolidine-azole conjugates: Simple and efficient asymmetric organocatalysts for Michael addition to nitrostyrenes. Science Bulletin, 2010, 55, 1735-1741.	1.7	2
120	Functionalized Chiral Ionic Liquid Catalyzed Asymmetric S _N 1 αâ€Alkylation of Ketones and Aldehydes. European Journal of Organic Chemistry, 2010, 2010, 4876-4885.	2.4	31
121	Chiral Primary Amine Catalyzed Asymmetric Epoxidation of αâ€Substituted Acroleins. European Journal of Organic Chemistry, 2010, 2010, 6840-6849.	2.4	32
122	Asymmetric Michael Addition Reaction of 3â€Substituted Oxindoles to Nitroolefins Catalyzed by a Chiral Alkyl―Substituted Thiourea Catalyst. Advanced Synthesis and Catalysis, 2010, 352, 416-424.	4.3	109
123	Highly Enantioselective Michael Addition Reactions of 3â€Substituted Benzofuranâ€2(3 <i>H</i>)â€ones to Chalcones Catalyzed by a Chiral Alkylâ€Substituted Thiourea. Advanced Synthesis and Catalysis, 2010, 352, 1097-1101.	4.3	53
124	Physical Organic Study of Structure–Activity–Enantioselectivity Relationships in Asymmetric Bifunctional Thiourea Catalysis: Hints for the Design of New Organocatalysts. Chemistry - A European Journal, 2010, 16, 450-455.	3.3	121
125	Asymmetric S _N 1 αâ€Alkylation of Cyclic Ketones Catalyzed by Functionalized Chiral Ionic Liquid (FCIL) Organocatalysts. Chemistry - A European Journal, 2010, 16, 2045-2049.	3.3	85
126	Asymmetric Retro―and Transferâ€Aldol Reactions Catalyzed by a Simple Chiral Primary Amine. Chemistry - A European Journal, 2010, 16, 4457-4461.	3.3	64

#	Article	IF	CITATIONS
127	Asymmetric Conjugate Addition of Oxindoles to 2â€Chloroacrylonitrile: A Highly Effective Organocatalytic Strategy for Simultaneous Construction of 1,3â€Nonadjacent Stereocenters Leading to Chiral Pyrroloindolines. Chemistry - A European Journal, 2010, 16, 14290-14294.	3.3	75
128	Asymmetric Supramolecular Primary Amine Catalysis in Aqueous Buffer: Connections of Selective Recognition and Asymmetric Catalysis. Journal of the American Chemical Society, 2010, 132, 7216-7228.	13.7	101
129	Asymmetric Binary-Acid Catalysis with Chiral Phosphoric Acid and MgF ₂ : Catalytic Enantioselective Friedelâ ''Crafts Reactions of β,γ-Unsaturated α-Ketoesters. Organic Letters, 2010, 12, 1096-1099.	4.6	139
130	Chiral Amine–Polyoxometalate Hybrids as Recoverable Asymmetric Enamine Catalysts under Neat and Aqueous Conditions. European Journal of Organic Chemistry, 2009, 2009, 132-140.	2.4	23
131	Chiral Primary Amine–Polyoxometalate Acid Hybrids as Asymmetric Recoverable Iminiumâ€Based Catalysts. European Journal of Organic Chemistry, 2009, 2009, 4486-4493.	2.4	40
132	Bifunctional catalysis of Morita-Baylis-Hillman (MBH) reaction with chiral primary-tertiary diamine: A non-typical MBH catalytic pathway. Science in China Series B: Chemistry, 2009, 52, 1300-1308.	0.8	2
133	Functionalized Chiral Ionic Liquids: A New Type of Asymmetric Organocatalysts and Nonclassical Chiral Ligands. Chemistry - an Asian Journal, 2009, 4, 1184-1195.	3.3	87
134	Asymmetric Direct Aldol Reactions of Acetoacetals Catalyzed by a Simple Chiral Primary Amine. Journal of Organic Chemistry, 2009, 74, 9521-9523.	3.2	37
135	Magnetic nanoparticle supported ionic liquid catalysts for CO2 cycloaddition reactions. Green Chemistry, 2009, 11, 455.	9.0	236
136	Noncovalently Supported Heterogeneous Chiral Amine Catalysts for Asymmetric Direct Aldol and Michael Addition Reactions. Chemistry - A European Journal, 2008, 14, 1273-1281.	3.3	108
137	Organocatalytic Threeâ€Component Reactions of Pyruvate, Aldehyde and Aniline by Hydrogenâ€Bonding Catalysts. European Journal of Organic Chemistry, 2008, 2008, 4350-4356.	2.4	54
138	Asymmetric bifunctional primary aminocatalysis on magnetic nanoparticles. Chemical Communications, 2008, , 5719.	4.1	117
139	Asymmetric Direct Aldol Reactions of Pyruvic Derivatives. Organic Letters, 2008, 10, 1775-1778.	4.6	95
140	Highly Enantioselective Direct <i>syn</i> - and <i>anti</i> -Aldol Reactions of Dihydroxyacetones Catalyzed by Chiral Primary Amine Catalysts. Organic Letters, 2008, 10, 653-656.	4.6	124
141	Functionalized Chiral Ionic Liquid Catalyzed Enantioselective Desymmetrizations of Prochiral Ketones via Asymmetric Michael Addition Reaction. Journal of Organic Chemistry, 2007, 72, 9350-9352.	3.2	109
142	A Simple Primaryâ^'Tertiary Diamineâ^'BrÃ,nsted Acid Catalyst for Asymmetric Direct Aldol Reactions of Linear Aliphatic Ketones. Journal of the American Chemical Society, 2007, 129, 3074-3075.	13.7	268
143	Chiral Amineâ^'Polyoxometalate Hybrids as Highly Efficient and Recoverable Asymmetric Enamine Catalysts. Organic Letters, 2007, 9, 3675-3678.	4.6	92
144	Magnetic Nanoparticle‣upported Morita–Baylis–Hillman Catalysts. Advanced Synthesis and Catalysis, 2007, 349, 2431-2434.	4.3	98

#	Article	IF	CITATIONS
145	Facile evolution of asymmetric organocatalysts in water assisted by surfactant BrÃ,nsted acids. Tetrahedron, 2007, 63, 11307-11314.	1.9	77
146	Surfactant-type asymmetric organocatalyst: organocatalytic asymmetric Michael addition to nitrostyrenes in water. Chemical Communications, 2006, , 3687.	4.1	168
147	Evolution of Pyrrolidine-Type Asymmetric Organocatalysts by "Click―Chemistry. Journal of Organic Chemistry, 2006, 71, 9244-9247.	3.2	114
148	Functionalized Chiral Ionic Liquids as Highly Efficient Asymmetric Organocatalysts for Michael Addition to Nitroolefins. Angewandte Chemie - International Edition, 2006, 45, 3093-3097.	13.8	424
149	Remarkable Rate Acceleration of Imidazole-Promoted Baylisâ^'Hillman Reaction Involving Cyclic Enones in Basic Water Solution. Journal of Organic Chemistry, 2004, 69, 555-558.	3.2	109
150	Efficient Baylisâ^'Hillman Reactions of Cyclic Enones in Methanol As Catalyzed by Methoxide Anion. Journal of Organic Chemistry, 2004, 69, 8413-8422.	3.2	75