
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1779743/publications.pdf Version: 2024-02-01

LEI XIANC

#	Article	IF	CITATIONS
1	The status of soil contamination by semivolatile organic chemicals (SVOCs) in China: A review. Science of the Total Environment, 2008, 389, 209-224.	8.0	281
2	Soil contamination and sources of phthalates and its health risk in China: A review. Environmental Research, 2018, 164, 417-429.	7.5	239
3	Investigation of Sulfonamide, Tetracycline, and Quinolone Antibiotics in Vegetable Farmland Soil in the Pearl River Delta Area, Southern China. Journal of Agricultural and Food Chemistry, 2011, 59, 7268-7276.	5.2	213
4	Efficient phytoremediation of organic contaminants in soils using plant–endophyte partnerships. Science of the Total Environment, 2017, 583, 352-368.	8.0	185
5	Occurrence and distribution of antibiotics and antibiotic resistant genes in water and sediments of urban rivers with black-odor water in Guangzhou, South China. Science of the Total Environment, 2019, 670, 170-180.	8.0	123
6	Distribution and risk assessment of quinolone antibiotics in the soils from organic vegetable farms of a subtropical city, Southern China. Science of the Total Environment, 2014, 487, 399-406.	8.0	111
7	Variations in phthalate ester (PAE) accumulation and their formation mechanism in Chinese flowering cabbage (Brassica parachinensis L.) cultivars grown on PAE-contaminated soils. Environmental Pollution, 2015, 206, 95-103.	7.5	101
8	Comparison of physicochemical properties of biochars and hydrochars produced from food wastes. Journal of Cleaner Production, 2019, 236, 117637.	9.3	100
9	Complete degradation of the endocrine disruptor di-(2-ethylhexyl) phthalate by a novel Agromyces sp. MT-O strain and its application to bioremediation of contaminated soil. Science of the Total Environment, 2016, 562, 170-178.	8.0	95
10	Co-metabolic degradation of the antibiotic ciprofloxacin by the enriched bacterial consortium XG and its bacterial community composition. Science of the Total Environment, 2019, 665, 41-51.	8.0	83
11	Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environmental Science and Pollution Research, 2015, 22, 10452-10462.	5.3	82
12	Polycyclic Aromatic Hydrocarbons and Phthalic Acid Esters in Vegetables from Nine Farms of the Pearl River Delta, South China. Archives of Environmental Contamination and Toxicology, 2009, 56, 181-189.	4.1	80
13	Biodegradation pathway of di-(2-ethylhexyl) phthalate by a novel Rhodococcus pyridinivorans XB and its bioaugmentation for remediation of DEHP contaminated soil. Science of the Total Environment, 2018, 640-641, 1121-1131.	8.0	77
14	Biodegradation of di-n-butyl phthalate (DBP) by a novel endophytic Bacillus megaterium strain YJB3. Science of the Total Environment, 2018, 616-617, 117-127.	8.0	68
15	High ecological and human health risks from microcystins in vegetable fields in southern China. Environment International, 2019, 133, 105142.	10.0	67
16	Biodegradation of di-n-butylphthalate and phthalic acid by a novel Providencia sp. 2D and its stimulation in a compost-amended soil. Biology and Fertility of Soils, 2016, 52, 65-76.	4.3	63
17	Occurrence and dissipation mechanism of organic pollutants during the composting of sewage sludge: A critical review. Bioresource Technology, 2021, 328, 124847.	9.6	61
18	Cell wall modification induced by an arbuscular mycorrhizal fungus enhanced cadmium fixation in rice root. Journal of Hazardous Materials, 2021, 416, 125894.	12.4	56

#	Article	IF	CITATIONS
19	Genotypic variation in the uptake, accumulation, and translocation of di-(2-ethylhexyl) phthalate by twenty cultivars of rice (Oryza sativa L.). Ecotoxicology and Environmental Safety, 2015, 116, 50-58.	6.0	49
20	Occurrence and risk assessment of tetracycline antibiotics in soil from organic vegetable farms in a subtropical city, south China. Environmental Science and Pollution Research, 2016, 23, 13984-13995.	5.3	49
21	Plant Uptake and Enhanced Dissipation of Di(2-Ethylhexyl) Phthalate (DEHP) in Spiked Soils by Different Plant Species. International Journal of Phytoremediation, 2014, 16, 609-620.	3.1	47
22	Genotypic variation and mechanism in uptake and translocation of perfluorooctanoic acid (PFOA) in lettuce (Lactuca sativa L.) cultivars grown in PFOA-polluted soils. Science of the Total Environment, 2018, 636, 999-1008.	8.0	45
23	Sorption Mechanism, Kinetics, and Isotherms of Di- <i>n</i> butyl Phthalate to Different Soil Particle-Size Fractions. Journal of Agricultural and Food Chemistry, 2019, 67, 4734-4745.	5.2	45
24	Occurrence and human health risks of phthalates in indoor air of laboratories. Science of the Total Environment, 2020, 707, 135609.	8.0	45
25	Mechanism and Implication of the Sorption of Perfluorooctanoic Acid by Varying Soil Size Fractions. Journal of Agricultural and Food Chemistry, 2018, 66, 11569-11579.	5.2	43
26	Oxalic Acid in Root Exudates Enhances Accumulation of Perfluorooctanoic Acid in Lettuce. Environmental Science & Technology, 2020, 54, 13046-13055.	10.0	42
27	Enhanced dissipation of DEHP in soil and simultaneously reduced bioaccumulation of DEHP in vegetable using bioaugmentation with exogenous bacteria. Biology and Fertility of Soils, 2017, 53, 663-675.	4.3	40
28	Rice root exudates enhance desorption and bioavailability of phthalic acid esters (PAEs) in soil associating with cultivar variation in PAE accumulation. Environmental Research, 2020, 186, 109611.	7.5	40
29	Functional genomic analysis of phthalate acid ester (PAE) catabolism genes in the versatile PAE-mineralising bacterium Rhodococcus sp. 2G. Science of the Total Environment, 2018, 640-641, 646-652.	8.0	38
30	Spraying carbon powder derived from mango wood biomass as high-performance anode in bio-electrochemical system. Bioresource Technology, 2020, 300, 122623.	9.6	37
31	Biodegradation of di-butyl phthalate (DBP) by a novel endophytic bacterium Bacillus subtilis and its bioaugmentation for removing DBP from vegetation slurry. Journal of Environmental Management, 2018, 224, 1-9.	7.8	36
32	Regulation Network of Sucrose Metabolism in Response to Trivalent and Hexavalent Chromium in <i>Oryza sativa</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 9738-9748.	5.2	36
33	Novel phosphate-solubilising bacteria isolated from sewage sludge and the mechanism of phosphate solubilisation. Science of the Total Environment, 2019, 658, 474-484.	8.0	35
34	Prevalent phthalates in air-soil-vegetable systems of plastic greenhouses in a subtropical city and health risk assessments. Science of the Total Environment, 2020, 743, 140755.	8.0	33
35	Improved bio-electricity production in bio-electrochemical reactor for wastewater treatment using biomass carbon derived from sludge supported carbon felt anode. Science of the Total Environment, 2020, 726, 138573.	8.0	33
36	Variety-Selective Rhizospheric Activation, Uptake, and Subcellular Distribution of Perfluorooctanesulfonate (PFOS) in Lettuce (<i>Lactuca sativa</i> L.). Environmental Science & Technology, 2021, 55, 8730-8741.	10.0	33

#	Article	IF	CITATIONS
37	Variation in accumulation, transport, and distribution of phthalic acid esters (PAEs) in soil columns grown with low- and high-PAE accumulating rice cultivars. Environmental Science and Pollution Research, 2018, 25, 17768-17780.	5.3	32
38	Variation in accumulation and translocation of di-n-butyl phthalate (DBP) among rice (Oryza sativa L.) genotypes and selection of cultivars for low DBP exposure. Environmental Science and Pollution Research, 2017, 24, 7298-7309.	5.3	30
39	Variation in metabolism and degradation of di-n-butyl phthalate (DBP) by high- and low-DBP accumulating cultivars of rice (Oryza sativa L.) and crude enzyme extracts. Science of the Total Environment, 2019, 668, 1117-1127.	8.0	30
40	Determination of Trace Perfluoroalkyl Carboxylic Acids in Edible Crop Matrices: Matrix Effect and Method Development. Journal of Agricultural and Food Chemistry, 2017, 65, 8763-8772.	5.2	29
41	Bioaugmentation of Exogenous Strain <i>Rhodococcus</i> sp. 2G Can Efficiently Mitigate Di(2-ethylhexyl) Phthalate Contamination to Vegetable Cultivation. Journal of Agricultural and Food Chemistry, 2019, 67, 6940-6949.	5.2	29
42	Insights into the binding interaction of substrate with catechol 2,3-dioxygenase from biophysics point of view. Journal of Hazardous Materials, 2020, 391, 122211.	12.4	28
43	Intraspecific variability of ciprofloxacin accumulation, tolerance, and metabolism in Chinese flowering cabbage (Brassica parachinensis). Journal of Hazardous Materials, 2018, 349, 252-261.	12.4	27
44	Sorption kinetics, isotherms, and mechanism of aniline aerofloat to agricultural soils with various physicochemical properties. Ecotoxicology and Environmental Safety, 2018, 154, 84-91.	6.0	27
45	Effects of rice straw biochar on sorption and desorption of di-n-butyl phthalate in different soil particle-size fractions. Science of the Total Environment, 2020, 702, 134878.	8.0	27
46	Persistent contamination of polycyclic aromatic hydrocarbons (PAHs) and phthalates linked to the shift of microbial function in urban river sediments. Journal of Hazardous Materials, 2021, 414, 125416.	12.4	26
47	Cultivar-Dependent Accumulation and Translocation of Perfluorooctanesulfonate among Lettuce (Lactuca sativa L.) Cultivars Grown on Perfluorooctanesulfonate-Contaminated Soil. Journal of Agricultural and Food Chemistry, 2018, 66, 13096-13106.	5.2	25
48	Improved cathodic oxygen reduction and bioelectricity generation of electrochemical reactor based on reduced graphene oxide decorated with titanium-based composites. Bioresource Technology, 2020, 296, 122319.	9.6	25
49	Physiological differences in response to di-n-butyl phthalate (DBP) exposure between low- and high-DBP accumulating cultivars of Chinese flowering cabbage (Brassica parachinensis L.). Environmental Pollution, 2016, 208, 840-849.	7.5	24
50	Variations in microbial community and di-(2-ethylhexyl) phthalate (DEHP) dissipation in different rhizospheric compartments between low- and high-DEHP accumulating cultivars of rice (Oryza sativa) Tj ETQq0 () Oa .g BT /C)verbock 10 T
51	Analysis of Trace Quaternary Ammonium Compounds (QACs) in Vegetables Using Ultrasonic-Assisted Extraction and Gas Chromatography–Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2015, 63, 6689-6697.	5.2	22
52	Effects of β-cyclodextrin on phytoremediation of soil co-contaminated with Cd and BDE-209 by arbuscular mycorrhizal amaranth. Chemosphere, 2019, 220, 910-920.	8.2	22
53	Sorption of dodecyltrimethylammonium chloride (DTAC) to agricultural soils. Science of the Total Environment, 2016, 560-561, 197-203.	8.0	21
54	Research Progresses of Determination of Perfluorinated Compounds in Environmental Water and Solid Samples. Chinese Journal of Analytical Chemistry, 2017, 45, 601-610.	1.7	20

#	Article	IF	CITATIONS
55	Effects of arbuscular mycorrhizal fungi on redox homeostasis of rice under Cd stress. Plant and Soil, 2020, 455, 121-138.	3.7	20
56	AM fungi increase uptake of Cd and BDE-209 and activities of dismutase and catalase in amaranth (Amaranthus hypochondriacus L.) in two contaminants spiked soil. Ecotoxicology and Environmental Safety, 2020, 195, 110485.	6.0	20
57	Adsorption of microcystin contaminants by biochars derived from contrasting pyrolytic conditions: Characteristics, affecting factors, and mechanisms. Science of the Total Environment, 2021, 763, 143028.	8.0	20
58	Improving yield and quality of vegetable grown in PAEs-contaminated soils by using novel bioorganic fertilizer. Science of the Total Environment, 2020, 739, 139883.	8.0	17
59	Using cadmium bioavailability to simultaneously predict its accumulation in crop grains and the bioaccessibility in soils. Science of the Total Environment, 2019, 665, 246-252.	8.0	16
60	Bioaccumulation and Phytotoxicity and Human Health Risk from Microcystin-LR under Various Treatments: A Pot Study. Toxins, 2020, 12, 523.	3.4	16
61	Global Picture of Protein Regulation in Response to Dibutyl Phthalate (DBP) Stress of Two <i>Brassica parachinensis</i> Cultivars Differing in DBP Accumulation. Journal of Agricultural and Food Chemistry, 2018, 66, 4768-4779.	5.2	15
62	Food Safety Concerns: Crop Breeding as a Potential Strategy to Address Issues Associated with the Recently Lowered Reference Doses for Perfluorooctanoic Acid and Perfluorooctane sulfonate. Journal of Agricultural and Food Chemistry, 2020, 68, 48-58.	5.2	15
63	Toxicological effects of microcystin-LR on earthworm (Eisenia fetida) in soil. Biology and Fertility of Soils, 2017, 53, 849-860.	4.3	14
64	Differences in Root Physiological and Proteomic Responses to Dibutyl Phthalate Exposure between Low- and High-DBP-Accumulation Cultivars of <i>Brassica parachinensis</i> . Journal of Agricultural and Food Chemistry, 2018, 66, 13541-13551.	5.2	13
65	Dynamics, thermodynamics, and mechanism of perfluorooctane sulfonate (PFOS) sorption to various soil particle-size fractions of paddy soil. Ecotoxicology and Environmental Safety, 2020, 206, 111105.	6.0	13
66	Diversity of endophytic bacteria in wild rice (Oryza meridionalis) and potential for promoting plant growth and degrading phthalates. Science of the Total Environment, 2022, 806, 150310.	8.0	13
67	Uptake pathways of phthalates (PAEs) into Chinese flowering cabbage grown in plastic greenhouses and lowering PAE accumulation by spraying PAE-degrading bacterial strain. Science of the Total Environment, 2022, 815, 152854.	8.0	13
68	Low-molecular-weight organic acids correlate with cultivar variation in ciprofloxacin accumulation in Brassica parachinensis L. Scientific Reports, 2017, 7, 10301.	3.3	12
69	Mechanistic insight into esterase-catalyzed hydrolysis of phthalate esters (PAEs) based on integrated multi-spectroscopic analyses and docking simulation. Journal of Hazardous Materials, 2021, 408, 124901.	12.4	12
70	A Robust Method for Routine Analysis of Perfluorooctane Sulfonate (PFOS) and Perfluorohexane Sulfonate (PFHxS) in Various Edible Crop Matrices. Food Analytical Methods, 2017, 10, 2518-2528.	2.6	9
71	Nitrate supply decreases uptake and accumulation of ciprofloxacin in Brassica parachinensis. Journal of Hazardous Materials, 2021, 403, 123803.	12.4	6
72	Extract of Unifloral <i>Camellia sinensis</i> L. Pollen Collected by <i>Apis mellifera</i> L. Honeybees Exerted Inhibitory Effects on Glucose Uptake and Transport by Interacting with Glucose Transporters in Human Intestinal Cells. Journal of Agricultural and Food Chemistry, 2021, 69, 1877-1887.	5.2	6

#	Article	IF	CITATIONS
73	Investigating the electron shuttling characteristics of resazurin in enhancing bio-electricity generation in microbial fuel cell. Chemical Engineering Journal, 2022, 428, 130924.	12.7	6
74	Role and possible mechanisms of earthworm Eisenia fetida in the elimination of microcystin-LR in soil. Geoderma, 2021, 392, 114980.	5.1	5
75	Sorption of microcystin-RR onto surface soils: Characteristics and influencing factors. Journal of Hazardous Materials, 2022, 431, 128571.	12.4	5
76	A Visual Leaf Zymography Technique for the <i>In Situ</i> Examination of Plant Enzyme Activity under the Stress of Environmental Pollution. Journal of Agricultural and Food Chemistry, 2020, 68, 14015-14024.	5.2	4
77	Variant-Specific Adsorption, Desorption, and Dissipation of Microcystin Toxins in Surface Soil. Journal of Agricultural and Food Chemistry, 2021, 69, 11825-11834.	5.2	4
78	The recent progress of CRISPR/Cas genome editing technology and its application in crop improvement. Chinese Science Bulletin, 2022, 67, 1923-1937.	0.7	1