Carl H Schiesser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1779643/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regio- and stereo-selectivity of alkenyl radical ring closure: A theoretical study. Tetrahedron, 1985, 41, 3925-3941.	1.0	686
2	Free-radical homolytic substitution: New methods for formation of bonds to heteroatoms. Tetrahedron, 1996, 52, 13265-13314.	1.0	147
3	Radicals Masquerading as Electrophiles: Dual Orbital Effects in Nitrogen-Philic Acyl Radical Cyclization and Related Addition Reactions. Accounts of Chemical Research, 2007, 40, 303-313.	7.6	136
4	(Aryltelluro)formates as Precursors of Alkyl Radicals:Â Thermolysis and Photolysis of Primary and Secondary Alkyl (Aryltelluro)formates. Journal of Organic Chemistry, 1996, 61, 5754-5761.	1.7	101
5	Reactivity of disulfide bonds is markedly affected by structure and environment: implications for protein modification and stability. Scientific Reports, 2016, 6, 38572.	1.6	101
6	Free-radical homolytic substitution at selenium: an efficient method for the preparation of selenophenes. Journal of Organic Chemistry, 1993, 58, 5632-5638.	1.7	78
7	Intramolecular Homolytic Substitution with Amidyl Radicals:Â A Free-Radical Synthesis of Ebselen and Related Analogues. Journal of Organic Chemistry, 1997, 62, 3103-3108.	1.7	68
8	Tandem free-radical addition/substitution chemistry and its application to the preparation of novel AT ₁ receptor antagonists. Organic and Biomolecular Chemistry, 2011, 9, 473-479.	1.5	62
9	Intramolecular Homolytic Substitution at Selenium:  Synthesis of Novel Selenium-Containing Vitamin E Analogues. Journal of Organic Chemistry, 2001, 66, 6286-6290.	1.7	56
10	Oxidation of Low-Density Lipoproteins Induces Amyloid-like Structures That Are Recognized by Macrophages. Biochemistry, 2005, 44, 9108-9116.	1.2	55
11	Homolytic substitution at selenium: ring closure of ω-(benzylseleno)alkyl radicals. Tetrahedron, 1993, 49, 2557-2566.	1.0	54
12	On the existence of SH3, SeH3, and TeH3: Discrepancies between all-electron and pseudopotential calculations. Journal of Computational Chemistry, 1995, 16, 1055-1066.	1.5	54
13	Selenosartans: Novel selenophene analogues of milfasartan and eprosartan. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1241-1244.	1.0	54
14	Unexpected Leaving Ability of (Phenyltelluro)formates in the Presence of Internal Nucleophiles: Complications during Alkyl and Oxyacyl Radical Generation in the Preparation of Sulfur- and Selenium-Containing Heterocycles. Journal of Organic Chemistry, 1998, 63, 3032-3036.	1.7	51
15	Preparation of 5-Selenopentopyranose Sugars from Pentose Starting Materials by Samarium(II) Iodide or (Phenylseleno)formate Mediated Ring Closures. Tetrahedron, 2000, 56, 3995-4000.	1.0	49
16	Intramolecular Homolytic Substitution Chemistry:Â An ab Initio Study of 1,n-Chalcogenyl Group Transfer and Cyclization Reactions in Some ï‰-Chalcogenylalkyl Radicals. Journal of Organic Chemistry, 1999, 64, 1131-1139.	1.7	45
17	On the stability of 2-aminoselenophene-3-carboxylates: potential dual-acting selenium-containing allosteric enhancers of A1 adenosine receptor binding. Organic and Biomolecular Chemistry, 2007, 5, 1276.	1.5	43
18	Taming the free radical shrew ? learning to control homolytic reactions at higher heteroatoms. Chemical Communications, 2006, , 4055.	2.2	40

CARL H SCHIESSER

#	Article	IF	CITATIONS
19	Homolytic substitution at selenium: A convenient synthesis of benzoselenophenes. Tetrahedron Letters, 1992, 33, 5137-5140.	0.7	38
20	Structure–activity relationships of adenosines with heterocyclic N6-substituents. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 6779-6784.	1.0	38
21	Organostannanes Derived from (â^')-Menthol:  Controlling Stereochemistry during the Preparation of (1R,2S,5R)-Menthyldiphenyltin Hydride and Bis((1R,2S,5R)-menthyl)phenyltin Hydride. Organometallics, 1999, 18, 3342-3347.	1.1	37
22	Free Radical Homolytic Substitution by the Frontside Mechanism:Â Ab Initio Study of Homolytic Substitution Reactions at Silicon, Germanium, and Tin. Organometallics, 2000, 19, 1239-1246.	1.1	37
23	Preparation of novel selenapenams and selenacephems by nucleophilic and radical chemistry involving benzyl selenides. Organic and Biomolecular Chemistry, 2004, 2, 2612.	1.5	36
24	Homolytic substitution by iminyl radical at selenium: A free-radical route to 1,2-benzoselenazoles. Tetrahedron Letters, 1993, 34, 4347-4348.	0.7	33
25	Preventing Protein Oxidation with Sugars: Scavenging of Hypohalous Acids by 5-Selenopyranose and 4-Selenofuranose Derivatives. Chemical Research in Toxicology, 2012, 25, 2589-2599.	1.7	33
26	Synthesis and antioxidant capacity of 5-selenopyranose derivatives. Chemical Communications, 2011, 47, 9693.	2.2	31
27	An electron spin resonance study of the 2,5-diphenylchalcophene radical ions. Journal of Organometallic Chemistry, 1990, 389, 301-313.	0.8	29
28	Catalytic oxidant scavenging by selenium-containing compounds: Reduction of selenoxides and N-chloramines by thiols and redox enzymes. Redox Biology, 2017, 12, 872-882.	3.9	29
29	Kinetics of reaction of peroxynitrite with selenium- and sulfur-containing compounds: Absolute rate constants and assessment of biological significance. Free Radical Biology and Medicine, 2015, 89, 1049-1056.	1.3	28
30	Selenium dioxide-promoted selective synthesis of mono- and bis-sulfenylindoles. Organic Chemistry Frontiers, 2018, 5, 1983-1991.	2.3	28
31	Intramolecular homolytic substitution at tellurium: Preparation of a dihydrotellurophene by alkyltelluride-mediated SRN1/SHi reactions. Tetrahedron Letters, 1997, 38, 8429-8432.	0.7	27
32	Understanding (the lack of) homolytic substitution chemistry of sulfones. Chemical Communications, 2012, 48, 8326.	2.2	27
33	Palladium-Mediated Reactions of Chloroformates with Phenylselenotris(trimethylsilyl)silane and Aryltellurotris(trimethylsilyl)silane:Â Improved Procedure for the Preparation of (Phenylseleno)- and (Aryltelluro)formates. Journal of Organic Chemistry, 1998, 63, 5713-5715.	1.7	26
34	Unexpected dual orbital effects in radical addition reactions involving acyl, silyl and related radicals. Chemical Communications, 2006, , 1067.	2.2	26
35	1,4-Anhydro-4-seleno-d-talitol (SeTal) protects endothelial function in the mouse aorta by scavenging superoxide radicals under conditions of acute oxidative stress. Biochemical Pharmacology, 2017, 128, 34-45.	2.0	25
36	Reactivity of selenium-containing compounds with myeloperoxidase-derived chlorinating oxidants: Second-order rate constants and implications for biological damage. Free Radical Biology and Medicine, 2015, 84, 279-288.	1.3	22

CARL H SCHIESSER

#	Article	IF	CITATIONS
37	Treasures from the Free Radical Renaissance Period – Miscellaneous hexenyl radical kinetic data. Organic and Biomolecular Chemistry, 2011, 9, 1736-1743.	1.5	21
38	1,4-Anhydro-4-seleno-d-talitol (SeTal): a remarkable selenium-containing therapeutic molecule. New Journal of Chemistry, 2019, 43, 9759-9765.	1.4	21
39	Intramolecular Homolytic Translocation Chemistry:Â An ab Initio Study of 1,n-Halogen Atom Transfer Reactions in Some ω-Haloalkyl Radicals. Journal of Organic Chemistry, 1998, 63, 670-676.	1.7	20
40	An ab initio and DFT study of homolytic substitution reactions of acyl radicals at sulfur, selenium, and tellurium. New Journal of Chemistry, 2010, 34, 1692.	1.4	20
41	Preparation of 2,3-dihydroselenolo[2,3-b]pyridines and related compounds by free-radical means. Organic and Biomolecular Chemistry, 2006, 4, 466-474.	1.5	18
42	Synthesis of chiral organotin hydrides containing menthyl and oxazoline substituentsâ€. Dalton Transactions RSC, 2000, , 3693-3698.	2.3	15
43	Selenochromanes via tandem homolytic addition/substitution chemistry. Chemical Communications, 2010, 46, 565-567.	2.2	14
44	Toward Pyridine-Fused Selenium-Containing Antioxidants. Molecules, 2004, 9, 472-479.	1.7	13
45	Rate coefficients for intramolecular homolytic substitution of oxyacyl radicals at selenium. International Journal of Chemical Kinetics, 2012, 44, 51-58.	1.0	13
46	Synthesis and antioxidant capacity of novel stable 5-tellurofuranose derivatives. Chemical Communications, 2018, 54, 2990-2993.	2.2	12
47	7-Selenabicyclo[2.2.1]heptane. Chemical Communications, 2012, 48, 9126.	2.2	11
48	Steric trends and kinetic parameters for radical reductions involving alkyldiphenyltin hydrides. Journal of Physical Organic Chemistry, 1999, 12, 233-239.	0.9	10
49	Polysilane and related radical rearrangements: an ab initio study of (1,2)-silyl, germyl and stannyl translocations in radicals derived from trisilanes and related speciesâ€. Perkin Transactions II RSC, 2001, , 939-945.	1.1	10
50	The kinetics of alkyl radical ring closures at selenium: formation of selenane. Organic Chemistry Frontiers, 2014, 1, 645-651.	2.3	10
51	Dual action molecules: Bioassays of combined novel antioxidants and angiotensin II receptor antagonists. European Journal of Pharmacology, 2012, 695, 96-103.	1.7	9
52	Effects of a novel selenium substituted-sugar (1,4-anhydro-4-seleno-d-talitol, SeTal) on human coronary artery cell lines and mouse aortic rings. Biochemical Pharmacology, 2020, 173, 113631.	2.0	9
53	Carbonâ^'Silicon Hyperconjugation and Strain-Enhanced Hyperconjugation:  Structures of N-Methyl 2- and 4-tert-Butyldimethylsilylmethyl Pyridinium Cations. Organometallics, 2007, 26, 1361-1364.	1.1	7
54	The effect of leaving radical on the formation of tetrahydroselenophene by S _H i ring closure: an experimental and computational study. Organic and Biomolecular Chemistry, 2015, 13, 2310-2316.	1.5	7

CARL H SCHIESSER

#	Article	IF	CITATIONS
55	Fluorescent Angiotensin AT ₁ Receptor Antagonists. Asian Journal of Organic Chemistry, 2012, 1, 274-279.	1.3	6
56	Suppressive effect of 1,4-anhydro-4-seleno-D-talitol (SeTal) on atopic dermatitis-like skin lesions in mice through regulation of inflammatory mediators. Journal of Trace Elements in Medicine and Biology, 2021, 67, 126795.	1.5	6
57	Rate Coefficients for Intramolecular Homolytic Substitution of Oxyacyl Radicals at Sulfur. Australian Journal of Chemistry, 2013, 66, 323.	0.5	5
58	Slow homolytic substitution reactions at selenium: 2-Selenabicyclo[1.1.1]pentane. Computational and Theoretical Chemistry, 2015, 1068, 128-133.	1.1	4
59	Synthetic Uses of R3MH (M = Ge, Sn, Pb). , 0, , 1401-1483.		3
60	The quest for selenocycles: From an ESR spectrum to a commercial product. Journal of Chemical Research, 2022, 46, 174751982210895.	0.6	2
61	A simple model of the hydrophobic effect for molecular simulation of interfacial phenomena. Molecular Simulation, 2002, 28, 791-806.	0.9	1
62	Radical Cyclisation of αâ€Halo Aluminium Acetals: A Mechanistic Study. Chemistry - A European Journal, 2016, 22, 4809-4824.	1.7	1
63	Intramolecular homolytic substitution in selenoxides and selenones. Tetrahedron, 2016, 72, 7790-7795.	1.0	1
64	Semisynthetic bioactive organoselenium and organotellurium compounds. , 2022, , 253-289.		1
65	Art for bugs: â€~cultured' microorganisms. AICCM Bulletin, 2013, 34, 102-111.	0.1	Ο