
Liding Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1779496/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of land use conversion on soil organic carbon sequestration in the loess hilly area, loess plateau of China. Ecological Research, 2007, 22, 641-648.	0.7	199
2	Effects of soil conservation techniques on water erosion control: A global analysis. Science of the Total Environment, 2018, 645, 753-760.	3.9	126
3	Land use changes and socio-economic development strongly deteriorate river ecosystem health in one of the largest basins in China. Science of the Total Environment, 2018, 616-617, 376-385.	3.9	112
4	Bioaccumulation of antibiotics in crops under long-term manure application: Occurrence, biomass response and human exposure. Chemosphere, 2019, 219, 882-895.	4.2	103
5	Potential reduction in urban runoff by green spaces in Beijing: A scenario analysis. Urban Forestry and Urban Greening, 2015, 14, 300-308.	2.3	101
6	Source-sink landscape theory and its ecological significance. Frontiers of Biology in China: Selected Publications From Chinese Universities, 2008, 3, 131-136.	0.2	97
7	Responses of water erosion to rainfall extremes and vegetation types in a loess semiarid hilly area, NW China. Hydrological Processes, 2009, 23, 1780-1791.	1.1	83
8	Ecological civilization: perspectives from landscape ecology and landscape sustainability science. Landscape Ecology, 2019, 34, 1-8.	1.9	76
9	Quantifying the effects of precipitation, vegetation, and land preparation techniques on runoff and soil erosion in a Loess watershed of China. Science of the Total Environment, 2019, 652, 755-764.	3.9	73
10	Geostatistical analysis of soil moisture variability on Da Nangou catchment of the loess plateau, China. Environmental Geology, 2001, 41, 113-120.	1.2	64
11	Assessment of the impact of different vegetation patterns on soil erosion processes on semiarid loess slopes. Earth Surface Processes and Landforms, 2018, 43, 1860-1870.	1.2	63
12	Distribution, dynamics and determinants of antibiotics in soils in a peri-urban area of Yangtze River Delta, Eastern China. Chemosphere, 2018, 211, 261-270.	4.2	62
13	Development of a new index for integrating landscape patterns with ecological processes at watershed scale. Chinese Geographical Science, 2009, 19, 37-45.	1.2	61
14	The Impact of Greenspace on Thermal Comfort in a Residential Quarter of Beijing, China. International Journal of Environmental Research and Public Health, 2016, 13, 1217.	1.2	61
15	The Distribution and Accessibility of Urban Parks in Beijing, China: Implications of Social Equity. International Journal of Environmental Research and Public Health, 2019, 16, 4894.	1.2	59
16	Contribution of tourism development to protected area management: local stakeholder perspectives. International Journal of Sustainable Development and World Ecology, 2009, 16, 30-36.	3.2	54
17	The effects of terracing and vegetation on soil moisture retention in a dry hilly catchment in China. Science of the Total Environment, 2019, 647, 1323-1332.	3.9	53
18	Land-Use/Land-Cover Changes and Its Contribution to Urban Heat Island: A Case Study of Islamabad, Pakistan. Sustainability, 2020, 12, 3861.	1.6	53

#	Article	IF	CITATIONS
19	An improved export coefficient model to estimate non-point source phosphorus pollution risks under complex precipitation and terrain conditions. Environmental Science and Pollution Research, 2018, 25, 20946-20955.	2.7	46
20	Land preparation and vegetation type jointly determine soil conditions after long-term land stabilization measures in a typical hilly catchment, Loess Plateau of China. Journal of Soils and Sediments, 2017, 17, 144-156.	1.5	45
21	Soil contamination with antibiotics in a typical peri-urban area in eastern China: Seasonal variation, risk assessment, and microbial responses. Journal of Environmental Sciences, 2019, 79, 200-212.	3.2	42
22	Assessment of Ecological and Human Health Risks of Heavy Metal Contamination in Agriculture Soils Disturbed by Pipeline Construction. International Journal of Environmental Research and Public Health, 2014, 11, 2504-2520.	1.2	40
23	Effect of rainfall variation and landscape change on runoff and sediment yield from a loess hilly catchment in China. Environmental Earth Sciences, 2015, 73, 1005-1016.	1.3	40
24	Exploring the Linkage between Urban Flood Risk and Spatial Patterns in Small Urbanized Catchments of Beijing, China. International Journal of Environmental Research and Public Health, 2017, 14, 239.	1.2	40
25	Spatial distribution of heavy metal concentrations in peri-urban soils in eastern China. Environmental Science and Pollution Research, 2019, 26, 1615-1627.	2.7	38
26	The Trend Inconsistency between Land Surface Temperature and Near Surface Air Temperature in Assessing Urban Heat Island Effects. Remote Sensing, 2020, 12, 1271.	1.8	35
27	Assessing the effectiveness of imperviousness on stormwater runoff in micro urban catchments by model simulation. Hydrological Processes, 2016, 30, 1836-1848.	1.1	34
28	Nitrogen and phosphorus associating with different size suspended solids in roof and road runoff in Beijing, China. Environmental Science and Pollution Research, 2015, 22, 15788-15795.	2.7	33
29	Modeling the non-point source pollution risks by combing pollutant sources, precipitation, and landscape structure. Environmental Science and Pollution Research, 2019, 26, 11856-11863.	2.7	33
30	Effect of land use and topography on spatial variability of soil moisture in a gully catchment of the Loess Plateau, China. Ecohydrology, 2012, 5, 826-833.	1.1	32
31	Spatial scale effects of water erosion dynamics: Complexities, variabilities, and uncertainties. Chinese Geographical Science, 2012, 22, 127-143.	1.2	32
32	Monitoring and analysis of coastal reclamation from 1995–2015 in Tianjin Binhai New Area, China. Scientific Reports, 2017, 7, 3850.	1.6	32
33	An innovative modeling approach of linking land use patterns with soil antibiotic contamination in peri-urban areas. Environment International, 2020, 134, 105327.	4.8	31
34	A demand index for recreational ecosystem services associated with urban parks in Beijing, China. Journal of Environmental Management, 2019, 251, 109612.	3.8	29
35	Combining land preparation and vegetation restoration for optimal soil eco-hydrological services in the Loess Plateau, China. Science of the Total Environment, 2019, 657, 535-547.	3.9	29
36	Stochastic simulations reveal few green wave surfing populations among spring migrating herbivorous waterfowl. Nature Communications, 2019, 10, 2187.	5.8	28

#	Article	IF	CITATIONS
37	A conceptual model for a process-oriented landscape pattern analysis. Science China Earth Sciences, 2019, 62, 2050-2057.	2.3	27
38	Effects of land use and rainfall on sequestration of veterinary antibiotics in soils at the hillslope scale. Environmental Pollution, 2020, 260, 114112.	3.7	27
39	Plant traits in influencing soil moisture in semiarid grasslands of the Loess Plateau, China. Science of the Total Environment, 2020, 718, 137355.	3.9	25
40	Assessment OF SURFACE WATER QUALITY at Large Watershed Scale: Landâ€Use, Anthropogenic, and Administrative Impacts. Journal of the American Water Resources Association, 2013, 49, 741-752.	1.0	24
41	Co-contamination of antibiotics and metals in peri-urban agricultural soils and source identification. Environmental Science and Pollution Research, 2018, 25, 34063-34075.	2.7	24
42	Prediction models of urban heat island based on landscape patterns and anthropogenic heat dynamics. Landscape Ecology, 2021, 36, 1801-1815.	1.9	23
43	Veterinary antibiotics can reduce crop yields by modifying soil bacterial community and earthworm population in agro-ecosystems. Science of the Total Environment, 2022, 808, 152056.	3.9	22
44	Response of Surface Soil Hydrology to the Micro-Pattern of Bio-Crust in a Dry-Land Loess Environment, China. PLoS ONE, 2015, 10, e0133565.	1.1	21
45	What motivates farmers to participate in sustainable agriculture? Evidence and policy implications. International Journal of Sustainable Development and World Ecology, 2009, 16, 374-380.	3.2	20
46	Effect of agricultural land use changes on soil nutrient use efficiency in an agricultural area, Beijing, China. Chinese Geographical Science, 2011, 21, 392-402.	1.2	20
47	A multiscale soil loss evaluation index. Science Bulletin, 2006, 51, 448-456.	1.7	19
48	Scaling effects of landscape metrics: a comparison of two methods. Physical Geography, 2013, 34, 40-49.	0.6	19
49	Multimedia mass balance approach to characterizing the transport potential of antibiotics in soil–plant systems following manure application. Journal of Hazardous Materials, 2020, 393, 122363.	6.5	19
50	Effects of riparian vegetation patterns on the distribution and potential loss of soil nutrients: a case study of the Wenyu River in Beijing. Frontiers of Environmental Science and Engineering, 2015, 9, 279-287.	3.3	17
51	A precipitation-weighted landscape structure model to predict potential pollution contributions at watershed scales. Landscape Ecology, 2018, 33, 1603-1616.	1.9	17
52	Land use mix in the neighbourhood and childhood obesity. Obesity Reviews, 2021, 22, e13098.	3.1	17
53	Expanding the bridging capability of landscape ecology. Landscape Ecology, 2008, 23, 375-376.	1.9	16
54	Response of Soybean Yield to Daytime Temperature Change during Seed Filling: A Long-Term Field Study in Northeast China. Plant Production Science, 2009, 12, 526-532.	0.9	16

#	Article	IF	CITATIONS
55	The Joint Effects of Precipitation Gradient and Afforestation on Soil Moisture across the Loess Plateau of China. Forests, 2019, 10, 285.	0.9	16
56	Mapping soil organic carbon using auxiliary environmental covariates in a typical watershed in the Loess Plateau of China: a comparative study based on three kriging methods and a soil land inference model (SoLIM). Environmental Earth Sciences, 2015, 73, 239-251.	1.3	15
57	Analysis and assessment of heavy metal contamination in surface water and sediments: a case study from Luan River, Northern China. Frontiers of Environmental Science and Engineering, 2015, 9, 240-249.	3.3	15
58	Landscape network approach to assess ecological impacts of road projects on biological conservation. Chinese Geographical Science, 2014, 24, 5-14.	1.2	14
59	Geochemical isotopic composition in the Loess Plateau and corresponding source analyses: A case study of China's Yangjuangou catchment. Science of the Total Environment, 2017, 581-582, 794-800.	3.9	14
60	The Synergic Characteristics of Surface Water Pollution and Sediment Pollution with Heavy Metals in the Haihe River Basin, Northern China. Water (Switzerland), 2018, 10, 73.	1.2	14
61	Comparison on Land-Use/Land-Cover Indices in Explaining Land Surface Temperature Variations in the City of Beijing, China. Land, 2021, 10, 1018.	1.2	14
62	Public attitudes and perceptions to the West-to-East Pipeline Project and ecosystem management in large project construction. International Journal of Sustainable Development and World Ecology, 2012, 19, 219-228.	3.2	12
63	Chance and Challenge for China on Ecosystem Management: Lessons from the West-to-East Pipeline Project Construction. Ambio, 2006, 35, 91-93.	2.8	11
64	Evaluating canopy transpiration and water use of two typical planted tree species in the dryland Loess Plateau of China. Ecohydrology, 2017, 10, e1830.	1.1	11
65	Effects of non-native tree plantations on the diversity of understory plants and soil macroinvertebrates in the Loess Plateau of China. Plant and Soil, 2020, 446, 357-368.	1.8	11
66	Temporal and Spatial Variability of Water Supply Stress in the Haihe River Basin, Northern China ¹ . Journal of the American Water Resources Association, 2012, 48, 999-1007.	1.0	10
67	Trajectory analysis of agricultural lands occupation and its decoupling relationships with the growth rate of non-agricultural GDP in the Jing-Jin-Tang region, China. Environment, Development and Sustainability, 2019, 21, 799-815.	2.7	10
68	Soil carbon stock and flux in plantation forest and grassland ecosystems in Loess Plateau, China. Chinese Geographical Science, 2014, 24, 423-435.	1.2	7
69	Resolving the Conflicts Between Biodiversity Conservation and Socioeconomic Development in China: Fuzzy Clustering Approach. Biodiversity and Conservation, 2006, 15, 2813-2827.	1.2	6
70	Short-term changing patterns of stem water isotopes in shallow soils underlain by fractured bedrock. Hydrology Research, 2019, 50, 577-588.	1.1	6
71	Evaluation of seasonal patterns of hydraulic redistribution in a humid subtropical area, East China. Hydrological Processes, 2020, 34, 1052-1062.	1.1	5
72	An approach to quantify the dependence of economy on resource efficiency: A case study in Beijing-Tianjin-Hebei region of north China. Science of the Total Environment, 2021, 789, 147997.	3.9	4

#	Article	IF	CITATIONS
73	A Method for Identifying Urban Functional Zones Based on Landscape Types and Human Activities. Sustainability, 2022, 14, 4130.	1.6	4
74	How does pipeline construction affect land desertification? A case study in northwest China. Natural Hazards, 2015, 77, 1993-2004.	1.6	3
75	Economic Valuation of Earth's Critical Zone: A Pilot Study of the Zhangxi Catchment, China. Sustainability, 2020, 12, 1699.	1.6	3
76	Comparison of soil organic carbon and nitrogen dynamics between urban impervious surfaces and vegetation. Land Degradation and Development, 2021, 32, 5455-5467.	1.8	3
77	Regional-scale identification of three-dimensional pattern of vegetation landscapes. Chinese Geographical Science, 2014, 24, 104-112.	1.2	1