
Bruno Di Jeso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1779380/publications.pdf Version: 2024-02-01

RRUNO DI JESO

#	Article	IF	CITATIONS
1	The Pervasive Effects of ER Stress on a Typical Endocrine Cell: Dedifferentiation, Mesenchymal Shift and Antioxidant Response in the Thyrocyte. Frontiers in Endocrinology, 2020, 11, 588685.	3.5	5
2	Pathologic endoplasmic reticulum stress induced by glucotoxic insults inhibits adipocyte differentiation and induces an inflammatory phenotype. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1146-1156.	4.1	54
3	Thyroglobulin From Molecular and Cellular Biology to Clinical Endocrinology. Endocrine Reviews, 2016, 37, 2-36.	20.1	144
4	PED/PEA-15 Inhibits Hydrogen Peroxide-Induced Apoptosis in Ins-1E Pancreatic Beta-Cells via PLD-1. PLoS ONE, 2014, 9, e113655.	2.5	12
5	GRP78 Mediates Cell Growth and Invasiveness in Endometrial Cancer. Journal of Cellular Physiology, 2014, 229, 1417-1426.	4.1	30
6	Transient Covalent Interactions of Newly Synthesized Thyroglobulin with Oxidoreductases of the Endoplasmic Reticulum. Journal of Biological Chemistry, 2014, 289, 11488-11496.	3.4	27
7	Endoplasmic reticulum stress is activated in endometrial adenocarcinoma. Gynecologic Oncology, 2012, 125, 220-225.	1.4	38
8	Tyr Phosphatase-Mediated P-ERK Inhibition Suppresses Senescence in EIA + v-raf Transformed Cells, Which, Paradoxically, Are Apoptosis-Protected in a MEK-Dependent Manner. Neoplasia, 2011, 13, 120-IN6.	5.3	17
9	Maturation of Thyroglobulin Protein Region I. Journal of Biological Chemistry, 2011, 286, 33045-33052.	3.4	25
10	Cis and Trans Actions of the Cholinesterase-like Domain within the Thyroglobulin Dimer. Journal of Biological Chemistry, 2010, 285, 17564-17573.	3.4	26
11	The Cholinesterase-like Domain, Essential in Thyroglobulin Trafficking for Thyroid Hormone Synthesis, Is Required for Protein Dimerization. Journal of Biological Chemistry, 2009, 284, 12752-12761.	3.4	46
12	ER stress is associated with dedifferentiation and an epithelial-to-mesenchymal transition-like phenotype in PC Cl3 thyroid cells. Journal of Cell Science, 2008, 121, 477-486.	2.0	103
13	The cholinesterase-like domain of thyroglobulin functions as an intramolecular chaperone. Journal of Clinical Investigation, 2008, 118, 2950-2958.	8.2	74
14	Biological effects of 6 mT static magnetic fields: A comparative study in different cell types. Bioelectromagnetics, 2006, 27, 560-577.	1.6	95
15	The sarcoplasmic–endoplasmic reticulum Ca2+ ATPase 2b regulates the Ca2+ transients elicited by P2Y2 activation in PC Cl3 thyroid cells. Journal of Endocrinology, 2006, 190, 641-649.	2.6	6
16	Effects of extracellular nucleotides in the thyroid: P2Y2 receptor-mediated ERK1/2 activation and c-Fos induction in PC Cl3 cells. Cellular Signalling, 2005, 17, 739-749.	3.6	18
17	Differential response of normal, dedifferentiated and transformed thyroid cell lines to cisplatin treatment. Biochemical Pharmacology, 2005, 71, 50-60.	4.4	14
18	Multiple pathways for cationic amino acid transport in rat thyroid epithelial cell line PC Cl3. American Journal of Physiology - Cell Physiology, 2005, 288, C290-C303.	4.6	11

Bruno Di Jeso

#	Article	IF	CITATIONS
19	Mixed-Disulfide Folding Intermediates between Thyroglobulin and Endoplasmic Reticulum Resident Oxidoreductases ERp57 and Protein Disulfide Isomerase. Molecular and Cellular Biology, 2005, 25, 9793-9805.	2.3	73
20	TSH/cAMP up-regulate sarco/endoplasmic reticulum Ca2+-ATPases expression and activity in PC Cl3 thyroid cells. European Journal of Endocrinology, 2004, 150, 851-861.	3.7	9
21	Physical and Functional Interaction of CARMA1 and CARMA3 with ll̂º Kinase l̂³-NFl̂ºB Essential Modulator. Journal of Biological Chemistry, 2004, 279, 34323-34331.	3.4	64
22	The RHL-1 subunit of the asialoglycoprotein receptor of thyroid cells: cellular localization and its role in thyroglobulin endocytosis. Molecular and Cellular Endocrinology, 2003, 208, 51-59.	3.2	16
23	The α-chain of the nascent polypeptide-associated complex binds to and regulates FADD function. Biochemical and Biophysical Research Communications, 2003, 303, 1034-1041.	2.1	24
24	Promoter identification of CIKS, a novel NF-κB activating gene, and regulation of its expression. Gene, 2003, 307, 99-109.	2.2	1
25	Folding of thyroglobulin in the calnexin/calreticulin pathway and its alteration by loss of Ca2+ from the endoplasmic reticulum. Biochemical Journal, 2003, 370, 449-458.	3.7	68
26	Endoplasmic Reticulum Stress Causes Thyroglobulin Retention in this Organelle and Triggers Activation of Nuclear Factor-κB Via Tumor Necrosis Factor Receptor-Associated Factor 2. Endocrinology, 2002, 143, 2169-2177.	2.8	46
27	TUCAN/CARDINAL and DRAL participate in a common pathway for modulation of NF-κB activation. FEBS Letters, 2002, 521, 165-169.	2.8	60
28	Increase of [Ca2+]i via activation of ATP receptors in PC-Cl3 rat thyroid cell line. Cellular Signalling, 2002, 14, 61-67.	3.6	25
29	The Rat Asialoglycoprotein Receptor Binds the Amino-Terminal Domain of Thyroglobulin. Biochemical and Biophysical Research Communications, 2000, 268, 42-46.	2.1	14
30	Depletion of divalent cations within the secretory pathway inhibits the terminal glycosylation of complex carbohydrates of thyroglobulin. Biochimie, 1999, 81, 497-504.	2.6	7
31	Demonstration of a Ca2+ requirement for thyroglobulin dimerization and export to the golgi complex. FEBS Journal, 1998, 252, 583-590.	0.2	41
32	Perturbation of Cellular Calcium Delays the Secretion and Alters the Glycosylation of Thyroglobulin in FRTL-5 Cells. Biochemical and Biophysical Research Communications, 1997, 234, 133-136.	2.1	17
33	TSH-induced galactose incorporation at the NH2 terminus of thyroglobulin secreted by FRTL-5 cells. Biochemical and Biophysical Research Communications, 1992, 189, 1624-1630.	2.1	4
34	Cross-linking with dimethylsuberimidate to study thyroglobulin conformation. Biochemical and Biophysical Research Communications, 1985, 127, 37-43.	2.1	1
35	Calcium-induced changes in thyroglobulin conformation. Archives of Biochemistry and Biophysics, 1983, 227, 351-357.	3.0	12