List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/177925/publications.pdf Version: 2024-02-01

LAURA FUCAZZOLA

#	Article	IF	CITATIONS
1	Medullary thyroid cancer - An update. Best Practice and Research in Clinical Endocrinology and Metabolism, 2023, 37, 101655.	2.2	8
2	Thyroid pathology and female fertility: Myth or reality?. Annales D'Endocrinologie, 2022, 83, 168-171.	0.6	5
3	FAM83B is involved in thyroid cancer cell differentiation and migration. Scientific Reports, 2022, 12, .	1.6	0
4	How can we prevent disease relapse in Graves' orbitopathy after immunosuppressive treatment?. Expert Review of Endocrinology and Metabolism, 2022, 17, 269-274.	1.2	1
5	Real-World Performance of the American Thyroid Association Risk Estimates in Predicting 1-Year Differentiated Thyroid Cancer Outcomes: A Prospective Multicenter Study of 2000 Patients. Thyroid, 2021, 31, 264-271.	2.4	40
6	Fine needle aspiration wash out for thyroglobulin determination in the differential diagnosis of lung lesions. Endocrine, 2021, 71, 253-255.	1.1	1
7	Basal and stimulated calcitonin for the diagnosis of medullary thyroid cancer: updated thresholds and safety assessment. Journal of Endocrinological Investigation, 2021, 44, 587-597.	1.8	24
8	Lenvatinib as first-line treatment for advanced thyroid cancer: long progression-free survival. Endocrine, 2021, 72, 462-469.	1.1	15
9	ASO Author Reflections: Total Thyroidectomy Versus Lobectomy for Differentiated Thyroid Cancer. Annals of Surgical Oncology, 2021, 28, 4345-4346.	0.7	Ο
10	Total Thyroidectomy Versus Lobectomy for Thyroid Cancer: Single-Center Data and Literature Review. Annals of Surgical Oncology, 2021, 28, 4334-4344.	0.7	22
11	Personalized treatment for differentiated thyroid cancer: current data and new perspectives. Minerva Endocrinology, 2021, 46, 62-89.	0.6	6
12	Combined Mutational and Clonality Analyses Support the Existence of Intra-Tumor Heterogeneity in Papillary Thyroid Cancer. Journal of Clinical Medicine, 2021, 10, 2645.	1.0	3
13	<i>BRAF</i> V600E Status Sharply Differentiates Lymph Node Metastasis-associated Mortality Risk in Papillary Thyroid Cancer. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 3228-3238.	1.8	36
14	Post-Surgical Ablative or Adjuvant Radioiodine Therapy Has No Impact on Outcome in 1–4 cm Differentiated Thyroid Cancers without Extrathyroidal Extension. Journal of Clinical Medicine, 2021, 10, 4452.	1.0	0
15	Basal and Calcium-Stimulated Procalcitonin for the Diagnosis of Medullary Thyroid Cancers: Lights and Shadows. Frontiers in Endocrinology, 2021, 12, 754565.	1.5	9
16	Body Composition and Leptin/Ghrelin Levels during Lenvatinib for Thyroid Cancer. European Thyroid Journal, 2020, 9, 1-10.	1.2	10
17	Molecular markers for the classification of cytologically indeterminate thyroid nodules. Journal of Endocrinological Investigation, 2020, 43, 703-716.	1.8	34
18	BRAF V600E status may facilitate decision-making on active surveillance of low-risk papillary thyroid microcarcinoma. European Journal of Cancer, 2020, 124, 161-169.	1.3	41

#	Article	IF	CITATIONS
19	The molecular and gene/miRNA expression profiles of radioiodine resistant papillary thyroid cancer. Journal of Experimental and Clinical Cancer Research, 2020, 39, 245.	3.5	27
20	Clinical and Genetic Features of a Large Monocentric Series of Familial Non-Medullary Thyroid Cancers. Frontiers in Endocrinology, 2020, 11, 589340.	1.5	8
21	2021 European Thyroid Association Guideline on Thyroid Disorders prior to and during Assisted Reproduction. European Thyroid Journal, 2020, 9, 281-295.	1.2	91
22	Intratumoral Genetic Heterogeneity in Papillary Thyroid Cancer: Occurrence and Clinical Significance. Cancers, 2020, 12, 383.	1.7	31
23	2019 European Thyroid Association Guidelines for the Treatment and Follow-Up of Advanced Radioiodine-Refractory Thyroid Cancer. European Thyroid Journal, 2019, 8, 227-245.	1.2	179
24	Primary Adrenal Insufficiency During Lenvatinib or Vandetanib and Improvement of Fatigue After Cortisone Acetate Therapy. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 779-784.	1.8	35
25	Genetic variants of PARP4 gene and PARP4P2 pseudogene in patients with multiple primary tumors including thyroid cancer. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2019, 816-818, 111672.	0.4	3
26	Baseline and stimulated calcitonin: Thresholds for the diagnosis of medullary thyroid cancer. Annales D'Endocrinologie, 2019, 80, 191-192.	0.6	4
27	<i>DUOX2</i> / <i>DUOXA2</i> Mutations Frequently Cause Congenital Hypothyroidism that Evades Detection on Newborn Screening in the United Kingdom. Thyroid, 2019, 29, 790-801.	2.4	26
28	Absence of the <i>MAP2K5</i> germline variants c.G961A and c.T1100C in a wide series of familial nonmedullary thyroid carcinoma Italian families. International Journal of Cancer, 2019, 145, 600-600.	2.3	13
29	Natural history, treatment, and long-term follow up of patients with multiple endocrine neoplasia type 2B: an international, multicentre, retrospective study. Lancet Diabetes and Endocrinology,the, 2019, 7, 213-220.	5.5	86
30	Impact of Mutation Density and Heterogeneity on Papillary Thyroid Cancer Clinical Features and Remission Probability. Thyroid, 2019, 29, 237-251.	2.4	31
31	BRAF V600E Mutation-Assisted Risk Stratification of Solitary Intrathyroidal Papillary Thyroid Cancer for Precision Treatment. Journal of the National Cancer Institute, 2018, 110, 362-370.	3.0	60
32	Circulating miR-375 as a novel prognostic marker for metastatic medullary thyroid cancer patients. Endocrine-Related Cancer, 2018, 25, 217-231.	1.6	50
33	MassARRAY-based simultaneous detection of hotspot somatic mutations and recurrent fusion genes in papillary thyroid carcinoma: the PTC-MA assay. Endocrine, 2018, 61, 36-41.	1.1	13
34	Letter regarding the article: "Multiple HABP2 variants in familial papillary thyroid carcinoma: Contribution of a group of "thyroid-checked―controls―by Kern etÂal European Journal of Medical Genetics, 2018, 61, 104-105.	0.7	7
35	Genetics and management of congenital hypothyroidism. Best Practice and Research in Clinical Endocrinology and Metabolism, 2018, 32, 387-396.	2.2	52
36	Italian consensus on diagnosis and treatment of differentiated thyroid cancer: joint statements of six Italian societies. Journal of Endocrinological Investigation, 2018, 41, 849-876.	1.8	165

#	Article	IF	CITATIONS
37	Genetic Factors in Thyroid Disease. , 2018, , 496-505.		1
38	Segregation and expression analyses of hyaluronanâ€binding protein 2 (HABP2): insights from a large series of familial nonâ€medullary thyroid cancers and literature review. Clinical Endocrinology, 2017, 86, 837-844.	1.2	13
39	Digenic DUOX1 and DUOX2 Mutations in Cases With Congenital Hypothyroidism. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3085-3090.	1.8	53
40	Disorders of H 2 O 2 generation. Best Practice and Research in Clinical Endocrinology and Metabolism, 2017, 31, 225-240.	2.2	52
41	The Prognostic Value of Tumor Multifocality in Clinical Outcomes of Papillary Thyroid Cancer. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3241-3250.	1.8	80
42	Multicellular spheroids from normal and neoplastic thyroid tissues as a suitable model to test the effects of multikinase inhibitors. Oncotarget, 2017, 8, 9752-9766.	0.8	14
43	Oxidative stress and the subcellular localization of the telomerase reverse transcriptase (TERT) in papillary thyroid cancer. Molecular and Cellular Endocrinology, 2016, 431, 54-61.	1.6	23
44	Novel insights into the link between fetal cell microchimerism and maternal cancers. Journal of Cancer Research and Clinical Oncology, 2016, 142, 1697-1704.	1.2	16
45	Basal and stimulated calcitonin levels in patients with type 2 diabetes did not change during 1 year of Liraglutide treatment. Metabolism: Clinical and Experimental, 2016, 65, 1-6.	1.5	17
46	Fetal cell microchimerism in papillary thyroid cancer: A role in the outcome of the disease. International Journal of Cancer, 2015, 137, 2989-2993.	2.3	12
47	Fetal cell microchimerism: a protective role in autoimmune thyroid diseases. European Journal of Endocrinology, 2015, 173, 111-118.	1.9	16
48	Impact of estrogen and progesterone receptor expression on the clinical and molecular features of papillary thyroid cancer. European Journal of Endocrinology, 2015, 173, 29-36.	1.9	60
49	The modifier role of RET-G691S polymorphism in hereditary medullary thyroid carcinoma: functional characterization and expression/penetrance studies. Orphanet Journal of Rare Diseases, 2015, 10, 25.	1.2	24
50	Reference Range of Serum Calcitonin in Pediatric Population. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 1780-1784.	1.8	40
51	Telomerase in differentiated thyroid cancer: Promoter mutations, expression and localization. Molecular and Cellular Endocrinology, 2015, 399, 288-295.	1.6	100
52	SP600125 has a remarkable anticancer potential against undifferentiated thyroid cancer through selective action on ROCK and p53 pathways. Oncotarget, 2015, 6, 36383-36399.	0.8	32
53	Positive effect of fetal cell microchimerism on tumor presentation and outcome in papillary thyroid cancer. Chimerism, 2014, 5, 106-108.	0.7	4
54	The Clinical and Molecular Characterization of Patients With Dyshormonogenic Congenital Hypothyroidism Reveals Specific Diagnostic Clues for DUOX2 Defects. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E544-E553.	1.8	69

#	Article	IF	CITATIONS
55	Refining Calcium Test for the Diagnosis of Medullary Thyroid Cancer: Cutoffs, Procedures, and Safety. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 1656-1664.	1.8	98
56	The optimal range of RET mutations to be tested: European comments to the guidelines of the American Thyroid Association. Thyroid Research, 2013, 6, S8.	0.7	11
57	Association Between BRAF V600E Mutation and Mortality in Patients With Papillary Thyroid Cancer. JAMA - Journal of the American Medical Association, 2013, 309, 1493.	3.8	775
58	Stimulated Calcitonin Cut-Offs by Different Tests. European Thyroid Journal, 2013, 2, 49-56.	1.2	22
59	Comparison of Calcium and Pentagastrin Tests for the Diagnosis and Follow-Up of Medullary Thyroid Cancer. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 905-913.	1.8	95
60	The Primary Occurrence of <i>BRAF^{V600E}</i> Is a Rare Clonal Event in Papillary Thyroid Carcinoma. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 517-524.	1.8	134
61	A High Percentage of BRAFV600E Alleles in Papillary Thyroid Carcinoma Predicts a Poorer Outcome. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 2333-2340.	1.8	112
62	Microchimerism and Endocrine Disorders. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 1452-1461.	1.8	25
63	Papillary Thyroid Carcinoma and Inflammation. Frontiers in Endocrinology, 2011, 2, 88.	1.5	15
64	Fetal cell microchimerism in papillary thyroid cancer: studies in peripheral blood and tissues. International Journal of Cancer, 2010, 126, 2874-2878.	2.3	35
65	The tight relationship between papillary thyroid cancer, autoimmunity and inflammation: clinical and molecular studies. Clinical Endocrinology, 2010, 72, 702-708.	1.2	147
66	Clinical and molecular features of differentiated thyroid cancer diagnosed during pregnancy. European Journal of Endocrinology, 2010, 162, 145-151.	1.9	106
67	Four novel RET germline variants in exons 8 and 11 display an oncogenic potential in vitro. European Journal of Endocrinology, 2010, 162, 771-777.	1.9	28
68	Multiple endocrine neoplasia type 2 syndromes (MEN 2): results from the ItaMEN network analysis on the prevalence of different genotypes and phenotypes. European Journal of Endocrinology, 2010, 163, 301-308.	1.9	111
69	Outcome predictors and impact of central node dissection and radiometabolic treatments in papillary thyroid cancers â‰⊉ cm. Endocrine-Related Cancer, 2009, 16, 201-210.	1.6	50
70	Fetal Cell Microchimerism in Papillary Thyroid Cancer: A Possible Role in Tumor Damage and Tissue Repair. Cancer Research, 2008, 68, 8482-8488.	0.4	70
71	Biallelic Inactivation of the Dual Oxidase Maturation Factor 2 (DUOXA2) Gene as a Novel Cause of Congenital Hypothyroidism. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 605-610.	1.8	157
72	Histopathological and molecular studies in patients with goiter and hypercalcitoninemia: reactive or neoplastic C-cell hyperplasia?. Endocrine-Related Cancer, 2007, 14, 393-403.	1.6	34

#	Article	IF	CITATIONS
73	Correlation between B-RAFV600E mutation and clinico–pathologic parameters in papillary thyroid carcinoma: data from a multicentric Italian study and review of the literature. Endocrine-Related Cancer, 2006, 13, 455-464.	1.6	207
74	An in-frame complex germline mutation in the juxtamembrane intracellular domain causing RET activation in familial medullary thyroid carcinoma. Endocrine-Related Cancer, 2006, 13, 945-953.	1.6	12
75	Persistent mild hypothyroidism associated with novel sequence variants of theDUOX2 gene in two siblings. Human Mutation, 2005, 26, 395-395.	1.1	105
76	BRAF mutations in an Italian cohort of thyroid cancers. Clinical Endocrinology, 2004, 61, 239-243.	1.2	167
77	Frequent association between MEN 2A and cutaneous lichen amyloidosis. Clinical Endocrinology, 2003, 59, 156-161.	1.2	119
78	Multigenerational familial medullary thyroid cancer (FMTC): evidence for FMTC phenocopies and association with papillary thyroid cancer. Clinical Endocrinology, 2002, 56, 53-63.	1.2	42
79	The role of pendrin in iodide regulation. Experimental and Clinical Endocrinology and Diabetes, 2001, 109, 18-22.	0.6	22
80	Unilateral Surgery for Medullary Thyroid Carcinoma: Seeking for Clinical Practice Guidelines. Frontiers in Endocrinology, 0, 13, .	1.5	5
81	Daily Management of Patients on Multikinase Inhibitors' Treatment. Frontiers in Oncology, 0, 12, .	1.3	3