List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/177925/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Association Between BRAF V600E Mutation and Mortality in Patients With Papillary Thyroid Cancer. JAMA - Journal of the American Medical Association, 2013, 309, 1493.	7.4	775
2	Correlation between B-RAFV600E mutation and clinico–pathologic parameters in papillary thyroid carcinoma: data from a multicentric Italian study and review of the literature. Endocrine-Related Cancer, 2006, 13, 455-464.	3.1	207
3	2019 European Thyroid Association Guidelines for the Treatment and Follow-Up of Advanced Radioiodine-Refractory Thyroid Cancer. European Thyroid Journal, 2019, 8, 227-245.	2.4	179
4	BRAF mutations in an Italian cohort of thyroid cancers. Clinical Endocrinology, 2004, 61, 239-243.	2.4	167
5	Italian consensus on diagnosis and treatment of differentiated thyroid cancer: joint statements of six Italian societies. Journal of Endocrinological Investigation, 2018, 41, 849-876.	3.3	165
6	Biallelic Inactivation of the Dual Oxidase Maturation Factor 2 (DUOXA2) Gene as a Novel Cause of Congenital Hypothyroidism. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 605-610.	3.6	157
7	The tight relationship between papillary thyroid cancer, autoimmunity and inflammation: clinical and molecular studies. Clinical Endocrinology, 2010, 72, 702-708.	2.4	147
8	The Primary Occurrence of <i>BRAF^{V600E}</i> Is a Rare Clonal Event in Papillary Thyroid Carcinoma. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 517-524.	3.6	134
9	Frequent association between MEN 2A and cutaneous lichen amyloidosis. Clinical Endocrinology, 2003, 59, 156-161.	2.4	119
10	A High Percentage of BRAFV600E Alleles in Papillary Thyroid Carcinoma Predicts a Poorer Outcome. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 2333-2340.	3.6	112
11	Multiple endocrine neoplasia type 2 syndromes (MEN 2): results from the ItaMEN network analysis on the prevalence of different genotypes and phenotypes. European Journal of Endocrinology, 2010, 163, 301-308.	3.7	111
12	Clinical and molecular features of differentiated thyroid cancer diagnosed during pregnancy. European Journal of Endocrinology, 2010, 162, 145-151.	3.7	106
13	Persistent mild hypothyroidism associated with novel sequence variants of theDUOX2 gene in two siblings. Human Mutation, 2005, 26, 395-395.	2.5	105
14	Telomerase in differentiated thyroid cancer: Promoter mutations, expression and localization. Molecular and Cellular Endocrinology, 2015, 399, 288-295.	3.2	100
15	Refining Calcium Test for the Diagnosis of Medullary Thyroid Cancer: Cutoffs, Procedures, and Safety. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 1656-1664.	3.6	98
16	Comparison of Calcium and Pentagastrin Tests for the Diagnosis and Follow-Up of Medullary Thyroid Cancer. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 905-913.	3.6	95
17	2021 European Thyroid Association Guideline on Thyroid Disorders prior to and during Assisted Reproduction. European Thyroid Journal, 2020, 9, 281-295.	2.4	91
18	Natural history, treatment, and long-term follow up of patients with multiple endocrine neoplasia type 2B: an international, multicentre, retrospective study. Lancet Diabetes and Endocrinology,the, 2019, 7, 213-220.	11.4	86

#	Article	IF	CITATIONS
19	The Prognostic Value of Tumor Multifocality in Clinical Outcomes of Papillary Thyroid Cancer. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3241-3250.	3.6	80
20	Fetal Cell Microchimerism in Papillary Thyroid Cancer: A Possible Role in Tumor Damage and Tissue Repair. Cancer Research, 2008, 68, 8482-8488.	0.9	70
21	The Clinical and Molecular Characterization of Patients With Dyshormonogenic Congenital Hypothyroidism Reveals Specific Diagnostic Clues for DUOX2 Defects. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E544-E553.	3.6	69
22	Impact of estrogen and progesterone receptor expression on the clinical and molecular features of papillary thyroid cancer. European Journal of Endocrinology, 2015, 173, 29-36.	3.7	60
23	BRAF V600E Mutation-Assisted Risk Stratification of Solitary Intrathyroidal Papillary Thyroid Cancer for Precision Treatment. Journal of the National Cancer Institute, 2018, 110, 362-370.	6.3	60
24	Digenic DUOX1 and DUOX2 Mutations in Cases With Congenital Hypothyroidism. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3085-3090.	3.6	53
25	Disorders of H 2 O 2 generation. Best Practice and Research in Clinical Endocrinology and Metabolism, 2017, 31, 225-240.	4.7	52
26	Genetics and management of congenital hypothyroidism. Best Practice and Research in Clinical Endocrinology and Metabolism, 2018, 32, 387-396.	4.7	52
27	Outcome predictors and impact of central node dissection and radiometabolic treatments in papillary thyroid cancers â‰≌ cm. Endocrine-Related Cancer, 2009, 16, 201-210.	3.1	50
28	Circulating miR-375 as a novel prognostic marker for metastatic medullary thyroid cancer patients. Endocrine-Related Cancer, 2018, 25, 217-231.	3.1	50
29	Multigenerational familial medullary thyroid cancer (FMTC): evidence for FMTC phenocopies and association with papillary thyroid cancer. Clinical Endocrinology, 2002, 56, 53-63.	2.4	42
30	BRAF V600E status may facilitate decision-making on active surveillance of low-risk papillary thyroid microcarcinoma. European Journal of Cancer, 2020, 124, 161-169.	2.8	41
31	Reference Range of Serum Calcitonin in Pediatric Population. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 1780-1784.	3.6	40
32	Real-World Performance of the American Thyroid Association Risk Estimates in Predicting 1-Year Differentiated Thyroid Cancer Outcomes: A Prospective Multicenter Study of 2000 Patients. Thyroid, 2021, 31, 264-271.	4.5	40
33	<i>BRAF</i> V600E Status Sharply Differentiates Lymph Node Metastasis-associated Mortality Risk in Papillary Thyroid Cancer. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 3228-3238.	3.6	36
34	Fetal cell microchimerism in papillary thyroid cancer: studies in peripheral blood and tissues. International Journal of Cancer, 2010, 126, 2874-2878.	5.1	35
35	Primary Adrenal Insufficiency During Lenvatinib or Vandetanib and Improvement of Fatigue After Cortisone Acetate Therapy. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 779-784.	3.6	35
36	Histopathological and molecular studies in patients with goiter and hypercalcitoninemia: reactive or neoplastic C-cell hyperplasia?. Endocrine-Related Cancer, 2007, 14, 393-403.	3.1	34

#	Article	IF	CITATIONS
37	Molecular markers for the classification of cytologically indeterminate thyroid nodules. Journal of Endocrinological Investigation, 2020, 43, 703-716.	3.3	34
38	SP600125 has a remarkable anticancer potential against undifferentiated thyroid cancer through selective action on ROCK and p53 pathways. Oncotarget, 2015, 6, 36383-36399.	1.8	32
39	Impact of Mutation Density and Heterogeneity on Papillary Thyroid Cancer Clinical Features and Remission Probability. Thyroid, 2019, 29, 237-251.	4.5	31
40	Intratumoral Genetic Heterogeneity in Papillary Thyroid Cancer: Occurrence and Clinical Significance. Cancers, 2020, 12, 383.	3.7	31
41	Four novel RET germline variants in exons 8 and 11 display an oncogenic potential in vitro. European Journal of Endocrinology, 2010, 162, 771-777.	3.7	28
42	The molecular and gene/miRNA expression profiles of radioiodine resistant papillary thyroid cancer. Journal of Experimental and Clinical Cancer Research, 2020, 39, 245.	8.6	27
43	<i>DUOX2</i> / <i>DUOXA2</i> Mutations Frequently Cause Congenital Hypothyroidism that Evades Detection on Newborn Screening in the United Kingdom. Thyroid, 2019, 29, 790-801.	4.5	26
44	Microchimerism and Endocrine Disorders. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 1452-1461.	3.6	25
45	The modifier role of RET-G691S polymorphism in hereditary medullary thyroid carcinoma: functional characterization and expression/penetrance studies. Orphanet Journal of Rare Diseases, 2015, 10, 25.	2.7	24
46	Basal and stimulated calcitonin for the diagnosis of medullary thyroid cancer: updated thresholds and safety assessment. Journal of Endocrinological Investigation, 2021, 44, 587-597.	3.3	24
47	Oxidative stress and the subcellular localization of the telomerase reverse transcriptase (TERT) in papillary thyroid cancer. Molecular and Cellular Endocrinology, 2016, 431, 54-61.	3.2	23
48	The role of pendrin in iodide regulation. Experimental and Clinical Endocrinology and Diabetes, 2001, 109, 18-22.	1.2	22
49	Stimulated Calcitonin Cut-Offs by Different Tests. European Thyroid Journal, 2013, 2, 49-56.	2.4	22
50	Total Thyroidectomy Versus Lobectomy for Thyroid Cancer: Single-Center Data and Literature Review. Annals of Surgical Oncology, 2021, 28, 4334-4344.	1.5	22
51	Basal and stimulated calcitonin levels in patients with type 2 diabetes did not change during 1 year of Liraglutide treatment. Metabolism: Clinical and Experimental, 2016, 65, 1-6.	3.4	17
52	Fetal cell microchimerism: a protective role in autoimmune thyroid diseases. European Journal of Endocrinology, 2015, 173, 111-118.	3.7	16
53	Novel insights into the link between fetal cell microchimerism and maternal cancers. Journal of Cancer Research and Clinical Oncology, 2016, 142, 1697-1704.	2.5	16
54	Papillary Thyroid Carcinoma and Inflammation. Frontiers in Endocrinology, 2011, 2, 88.	3.5	15

#	Article	IF	CITATIONS
55	Lenvatinib as first-line treatment for advanced thyroid cancer: long progression-free survival. Endocrine, 2021, 72, 462-469.	2.3	15
56	Multicellular spheroids from normal and neoplastic thyroid tissues as a suitable model to test the effects of multikinase inhibitors. Oncotarget, 2017, 8, 9752-9766.	1.8	14
57	Segregation and expression analyses of hyaluronanâ€binding protein 2 (HABP2): insights from a large series of familial nonâ€medullary thyroid cancers and literature review. Clinical Endocrinology, 2017, 86, 837-844.	2.4	13
58	MassARRAY-based simultaneous detection of hotspot somatic mutations and recurrent fusion genes in papillary thyroid carcinoma: the PTC-MA assay. Endocrine, 2018, 61, 36-41.	2.3	13
59	Absence of the <i>MAP2K5</i> germline variants c.G961A and c.T1100C in a wide series of familial nonmedullary thyroid carcinoma Italian families. International Journal of Cancer, 2019, 145, 600-600.	5.1	13
60	An in-frame complex germline mutation in the juxtamembrane intracellular domain causing RET activation in familial medullary thyroid carcinoma. Endocrine-Related Cancer, 2006, 13, 945-953.	3.1	12
61	Fetal cell microchimerism in papillary thyroid cancer: A role in the outcome of the disease. International Journal of Cancer, 2015, 137, 2989-2993.	5.1	12
62	The optimal range of RET mutations to be tested: European comments to the guidelines of the American Thyroid Association. Thyroid Research, 2013, 6, S8.	1.5	11
63	Body Composition and Leptin/Ghrelin Levels during Lenvatinib for Thyroid Cancer. European Thyroid Journal, 2020, 9, 1-10.	2.4	10
64	Basal and Calcium-Stimulated Procalcitonin for the Diagnosis of Medullary Thyroid Cancers: Lights and Shadows. Frontiers in Endocrinology, 2021, 12, 754565.	3.5	9
65	Clinical and Genetic Features of a Large Monocentric Series of Familial Non-Medullary Thyroid Cancers. Frontiers in Endocrinology, 2020, 11, 589340.	3.5	8
66	Medullary thyroid cancer - An update. Best Practice and Research in Clinical Endocrinology and Metabolism, 2023, 37, 101655.	4.7	8
67	Letter regarding the article: "Multiple HABP2 variants in familial papillary thyroid carcinoma: Contribution of a group of "thyroid-checked―controls―by Kern etÂal European Journal of Medical Genetics, 2018, 61, 104-105.	1.3	7
68	Personalized treatment for differentiated thyroid cancer: current data and new perspectives. Minerva Endocrinology, 2021, 46, 62-89.	1.1	6
69	Thyroid pathology and female fertility: Myth or reality?. Annales D'Endocrinologie, 2022, 83, 168-171.	1.4	5
70	Unilateral Surgery for Medullary Thyroid Carcinoma: Seeking for Clinical Practice Guidelines. Frontiers in Endocrinology, 0, 13, .	3.5	5
71	Positive effect of fetal cell microchimerism on tumor presentation and outcome in papillary thyroid cancer. Chimerism, 2014, 5, 106-108.	0.7	4
72	Baseline and stimulated calcitonin: Thresholds for the diagnosis of medullary thyroid cancer. Annales D'Endocrinologie, 2019, 80, 191-192.	1.4	4

#	Article	IF	CITATIONS
73	Genetic variants of PARP4 gene and PARP4P2 pseudogene in patients with multiple primary tumors including thyroid cancer. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2019, 816-818, 111672.	1.0	3
74	Combined Mutational and Clonality Analyses Support the Existence of Intra-Tumor Heterogeneity in Papillary Thyroid Cancer. Journal of Clinical Medicine, 2021, 10, 2645.	2.4	3
75	Daily Management of Patients on Multikinase Inhibitors' Treatment. Frontiers in Oncology, 0, 12, .	2.8	3
76	Genetic Factors in Thyroid Disease. , 2018, , 496-505.		1
77	Fine needle aspiration wash out for thyroglobulin determination in the differential diagnosis of lung lesions. Endocrine, 2021, 71, 253-255.	2.3	1
78	How can we prevent disease relapse in Graves' orbitopathy after immunosuppressive treatment?. Expert Review of Endocrinology and Metabolism, 2022, 17, 269-274.	2.4	1
79	ASO Author Reflections: Total Thyroidectomy Versus Lobectomy for Differentiated Thyroid Cancer. Annals of Surgical Oncology, 2021, 28, 4345-4346.	1.5	Ο
80	Post-Surgical Ablative or Adjuvant Radioiodine Therapy Has No Impact on Outcome in 1–4 cm Differentiated Thyroid Cancers without Extrathyroidal Extension. Journal of Clinical Medicine, 2021, 10, 4452.	2.4	0
81	FAM83B is involved in thyroid cancer cell differentiation and migration. Scientific Reports, 2022, 12, .	3.3	0