Hugo Ag Loaiciga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/177911/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of Climatic-Change Impacts on Multiobjective Reservoir Operation with Multiobjective Genetic Programming. Journal of Water Resources Planning and Management - ASCE, 2015, 141, .	1.3	112
2	Application of the Water Cycle Algorithm to the Optimal Operation of Reservoir Systems. Journal of Irrigation and Drainage Engineering - ASCE, 2015, 141, .	0.6	99
3	Climate Change and Ground Water. Annals of the American Association of Geographers, 2003, 93, 30-41.	3.0	91
4	Adaptive Reservoir Operation Rules Under Climatic Change. Water Resources Management, 2015, 29, 1247-1266.	1.9	88
5	Development and Application of the Bat Algorithm for Optimizing the Operation of Reservoir Systems. Journal of Water Resources Planning and Management - ASCE, 2015, 141, .	1.3	87
6	Optimal Monthly Reservoir Operation Rules for Hydropower Generation Derived with SVR-NSGAII. Journal of Water Resources Planning and Management - ASCE, 2015, 141, .	1.3	80
7	Sea Water Intrusion by Sea‣evel Rise: Scenarios for the 21st Century. Ground Water, 2012, 50, 37-47.	0.7	78
8	Weed Optimization Algorithm for Optimal Reservoir Operation. Journal of Irrigation and Drainage Engineering - ASCE, 2016, 142, .	0.6	76
9	Hydropower Reservoir Management Under Climate Change: The Karoon Reservoir System. Water Resources Management, 2015, 29, 749-770.	1.9	72
10	Application of the Firefly Algorithm to Optimal Operation of Reservoirs with the Purpose of Irrigation Supply and Hydropower Production. Journal of Irrigation and Drainage Engineering - ASCE, 2016, 142, .	0.6	67
11	Air Permeability of Porous Materials Under Controlled Laboratory Conditions. Ground Water, 1998, 36, 558-565.	0.7	62
12	Evaluation of water shortage crisis in the Middle East and possible remedies. Journal of Water Supply: Research and Technology - AQUA, 2020, 69, 85-98.	0.6	62
13	Biogeography-Based Optimization Algorithm for Optimal Operation of Reservoir Systems. Journal of Water Resources Planning and Management - ASCE, 2016, 142, .	1.3	61
14	Opportunities and challenges of interbasin water transfers: a literature review with bibliometric analysis. Scientometrics, 2015, 105, 279-294.	1.6	56
15	Application of particle swarm optimization to water management: an introduction and overview. Environmental Monitoring and Assessment, 2020, 192, 281.	1.3	50
16	Modeling Water-Quality Parameters Using Genetic Algorithm–Least Squares Support Vector Regression and Genetic Programming. Journal of Environmental Engineering, ASCE, 2017, 143, .	0.7	49
17	Temporal variations of groundwater quality in the Western Jianghan Plain, China. Science of the Total Environment, 2017, 578, 542-550.	3.9	49
18	Modified Firefly Algorithm for Solving Multireservoir Operation in Continuous and Discrete Domains. Journal of Water Resources Planning and Management - ASCE, 2016, 142, .	1.3	48

#	Article	IF	CITATIONS
19	Reservoir Water-Quality Projections under Climate-Change Conditions. Water Resources Management, 2019, 33, 401-421.	1.9	42
20	Runoff Projection under Climate Change Conditions with Data-Mining Methods. Journal of Irrigation and Drainage Engineering - ASCE, 2017, 143, .	0.6	36
21	Application of non-animal–inspired evolutionary algorithms to reservoir operation: an overview. Environmental Monitoring and Assessment, 2019, 191, 439.	1.3	36
22	A new framework for the optimal management of urban runoff with low-impact development stormwater control measures considering service-performance reduction. Journal of Hydroinformatics, 2019, 21, 727-744.	1.1	33
23	Evaluation of the VIKOR and FOWA Multi-Criteria Decision Making Methods for Climate-Change Adaptation of Agricultural Water Supply. Water Resources Management, 2019, 33, 2867-2884.	1.9	32
24	A self-tuning ANN model for simulation and forecasting of surface flows. Water Resources Management, 2016, 30, 2907-2929.	1.9	31
25	Optimal Selective Withdrawal Rules Using a Coupled Data Mining Model and Genetic Algorithm. Journal of Water Resources Planning and Management - ASCE, 2016, 142, .	1.3	31
26	Solute dispersion in a variably saturated sand. Water Resources Research, 2003, 39, .	1.7	30
27	Real-time reservoir operation using data mining techniques. Environmental Monitoring and Assessment, 2018, 190, 594.	1.3	29
28	MUNICIPAL WATER USE AND WATER RATES DRIVEN BY SEVERE DROUGHT: A CASE STUDY. Journal of the American Water Resources Association, 1997, 33, 1313-1326.	1.0	28
29	Stormwater Control Measures: Optimization Methods for Sizing and Selection. Journal of Water Resources Planning and Management - ASCE, 2015, 141, .	1.3	28
30	Development of a Comparative Multiple Criteria Framework for Ranking Pareto Optimal Solutions of a Multiobjective Reservoir Operation Problem. Journal of Irrigation and Drainage Engineering - ASCE, 2016, 142, .	0.6	28
31	Machine-learning algorithms for forecast-informed reservoir operation (FIRO) to reduce flood damages. Scientific Reports, 2021, 11, 24295.	1.6	28
32	The soil leakage ratio in the Mudu watershed, China. Environmental Earth Sciences, 2016, 75, 1.	1.3	27
33	Assimilative Capacity and Flow Dilution for Water Quality Protection in Rivers. Journal of Hazardous, Toxic, and Radioactive Waste, 2015, 19, .	1.2	26
34	Parameter Estimation of Extended Nonlinear Muskingum Models with the Weed Optimization Algorithm. Journal of Irrigation and Drainage Engineering - ASCE, 2016, 142, .	0.6	26
35	Reservoir Operation Rules with Uncertainties in Reservoir Inflow and Agricultural Demand Derived with Stochastic Dynamic Programming. Journal of Irrigation and Drainage Engineering - ASCE, 2016, 142, .	0.6	26
36	Development of Adaptive Strategies for Irrigation Water Demand Management under Climate Change. Journal of Irrigation and Drainage Engineering - ASCE, 2017, 143, .	0.6	26

#	Article	IF	CITATIONS
37	Multiobjective Reservoir Operation for Water Quality Optimization. Journal of Irrigation and Drainage Engineering - ASCE, 2016, 142, .	0.6	25
38	Optimizing stormwater low-impact development strategies in an urban watershed considering sensitivity and uncertainty. Environmental Monitoring and Assessment, 2019, 191, 340.	1.3	24
39	Consolidation Settlement in Aquifers Caused by Pumping. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2013, 139, 1191-1204.	1.5	23
40	The Enhanced Honey-Bee Mating Optimization Algorithm for Water Resources Optimization. Water Resources Management, 2017, 31, 885-901.	1.9	23
41	Intermittent Operation of Water Distribution Networks Considering Equanimity and Justice Principles. Journal of Pipeline Systems Engineering and Practice, 2015, 6, .	0.9	22
42	Stormwater Control Measures for Runoff and Water Quality Management in Urban Landscapes. Journal of the American Water Resources Association, 2018, 54, 124-133.	1.0	22
43	Optimization of Run-of-River Hydropower Plant Design under Climate Change Conditions. Water Resources Management, 2018, 32, 3919-3934.	1.9	22
44	Optimal operation of reservoir systems with the symbiotic organisms search (SOS) algorithm. Journal of Hydroinformatics, 2017, 19, 507-521.	1.1	21
45	Reservoir Design and Operation with Variable Lake Hydrology. Journal of Water Resources Planning and Management - ASCE, 2002, 128, 399-405.	1.3	20
46	Estimation of the hydraulic parameters of leaky aquifers based on pumping tests and coupled simulation/optimization: verification using a layered aquifer in Tianjin, China. Hydrogeology Journal, 2019, 27, 3081-3095.	0.9	20
47	State-of-art of genetic programming applications in water-resources systems analysis. Environmental Monitoring and Assessment, 2020, 192, 73.	1.3	20
48	A review of applications of animalâ€inspired evolutionary algorithms in reservoir operation modelling. Water and Environment Journal, 2021, 35, 628-646.	1.0	20
49	Integrated strategic planning and multi-criteria decision-making framework with its application to agricultural water management. Scientific Reports, 2022, 12, 8406.	1.6	20
50	On the probability of droughts: The compound renewal model. Water Resources Research, 2005, 41, .	1.7	19
51	Modern-age buildup of CO2and its effects on seawater acidity and salinity. Geophysical Research Letters, 2006, 33, n/a-n/a.	1.5	19
52	WASPAS Application and Evolutionary Algorithm Benchmarking in Optimal Reservoir Optimization Problems. Journal of Water Resources Planning and Management - ASCE, 2017, 143, .	1.3	19
53	Application of the SVR-NSGAII to Hydrograph Routing in Open Channels. Journal of Irrigation and Drainage Engineering - ASCE, 2016, 142, .	0.6	18
54	Generalized Storage Equations for Flood Routing with Nonlinear Muskingum Models. Water Resources Management, 2019, 33, 2677-2691.	1.9	18

#	Article	IF	CITATIONS
55	Reservoir water quality simulation with data mining models. Environmental Monitoring and Assessment, 2020, 192, 482.	1.3	18
56	Sea-level rise and flooding in coastal riverine flood plains. Hydrological Sciences Journal, 2014, 59, 204-220.	1.2	17
57	Managing Municipal Water Supply and Use in Water-Starved Regions: Looking Ahead. Journal of Water Resources Planning and Management - ASCE, 2015, 141, .	1.3	17
58	The Safe Yield and Climatic Variability: Implications for Groundwater Management. Ground Water, 2017, 55, 334-345.	0.7	17
59	Optimal design of groundwater-level monitoring networks. Journal of Hydroinformatics, 2017, 19, 920-929.	1.1	16
60	Multiobjective Design of Water-Quality Monitoring Networks in River-Reservoir Systems. Journal of Environmental Engineering, ASCE, 2017, 143, .	0.7	16
61	Spatial and Temporal Downscaling of TRMM Precipitation with Novel Algorithms. Journal of Hydrometeorology, 2020, 21, 1259-1278.	0.7	16
62	Optimal virtual water flows for improved food security in water-scarce countries. Scientific Reports, 2021, 11, 21027.	1.6	16
63	The effect of reducing per capita water and energy uses on renewable water resources in the water, food and energy nexus. Scientific Reports, 2022, 12, 7582.	1.6	16
64	The adsorption/desorption of phosphorus in freshwater sediments from buffer zones: the effects of sediment concentration and pH. Environmental Monitoring and Assessment, 2016, 188, 13.	1.3	15
65	Simulation of Methyl Tertiary Butyl Ether Concentrations in River-Reservoir Systems Using Support Vector Regression. Journal of Irrigation and Drainage Engineering - ASCE, 2016, 142, .	0.6	15
66	Intermittent Urban Water Supply with Protection of Consumers' Welfare. Journal of Pipeline Systems Engineering and Practice, 2016, 7, .	0.9	15
67	Extended multi-objective firefly algorithm for hydropower energy generation. Journal of Hydroinformatics, 2017, 19, 734-751.	1.1	15
68	Logical Genetic Programming (LGP) Development for Irrigation Water Supply Hedging Under Climate Change Conditions. Irrigation and Drainage, 2017, 66, 530-541.	0.8	15
69	Environmental water demand assessment under climate change conditions. Environmental Monitoring and Assessment, 2017, 189, 359.	1.3	15
70	Green Stormwater Infrastructure (GSI) for Stormwater Management in the City of Los Angeles: Avalon Green Alleys Network. Environmental Processes, 2019, 6, 265-281.	1.7	15
71	Long-term groundwater level changes and land subsidence in Tianjin, China. Acta Geotechnica, 2021, 16, 1303-1314.	2.9	15
72	Climate change outlook for water resources management in a semiarid river basin: the effect of the environmental water demand. Environmental Earth Sciences, 2017, 76, 1.	1.3	14

#	Article	IF	CITATIONS
73	TRUNCATED DISTRIBUTIONS IN HYDROLOGIC ANALYSIS. Journal of the American Water Resources Association, 1992, 28, 853-863.	1.0	13
74	Steady state phreatic surfaces in sloping aquifers. Water Resources Research, 2005, 41, .	1.7	13
75	Application of Climate Projections and Monte Carlo Approach for Assessment of Future River Flow: Khorramabad River Basin, Iran. Journal of Hydrologic Engineering - ASCE, 2019, 24, .	0.8	13
76	Inter-basin hydropolitics for optimal water resources allocation. Environmental Monitoring and Assessment, 2020, 192, 478.	1.3	13
77	Integrated virtual water trade management considering self-sufficient production of strategic agricultural and industrial products. Science of the Total Environment, 2020, 743, 140797.	3.9	13
78	Optimal Water Allocation of Surface and Ground Water Resources Under Climate Change with WEAP and IWOA Modeling. Water Resources Management, 2022, 36, 3181-3205.	1.9	13
79	Optimal Operation of Water Distribution Networks under Water Shortage Considering Water Quality. Journal of Pipeline Systems Engineering and Practice, 2016, 7, 04016005.	0.9	12
80	Real-time water allocation policies calculated with bankruptcy games and genetic programing. Water Science and Technology: Water Supply, 2018, 18, 430-449.	1.0	12
81	Climate-environment-water: integrated and non-integrated approaches to reservoir operation. Environmental Monitoring and Assessment, 2020, 192, 60.	1.3	12
82	Ranking of wastewater reuse allocation alternatives using a variance-based weighted aggregated sum product assessment method. Environment, Development and Sustainability, 2022, 24, 2497-2513.	2.7	12
83	Evaluating the risk of phosphorus loss with a distributed watershed model featuring zero-order mobilization and first-order delivery. Science of the Total Environment, 2017, 609, 563-576.	3.9	11
84	Calculation of multi-objective optimal tradeoffs between environmental flows and hydropower generation. Environmental Earth Sciences, 2018, 77, 1.	1.3	11
85	Application of the Grasshopper Optimization Algorithm (GOA) to the Optimal Operation of Hydropower Reservoir Systems Under Climate Change. Water Resources Management, 2021, 35, 4325-4348.	1.9	11
86	Developing Strategies for Agricultural Water Management of Large Irrigation and Drainage Networks with Fuzzy MCDM. Water Resources Management, 2022, 36, 4885-4912.	1.9	11
87	Evaluation of River Water Transfer Alternatives with the TODIM Multi-Criteria Decision Making Method. Water Resources Management, 2020, 34, 4847-4863.	1.9	10
88	Developing a novel parameter-free optimization framework for flood routing. Scientific Reports, 2021, 11, 16183.	1.6	10
89	Environmental sustainability: a review of the water–energy–food nexus. Journal of Water Supply: Research and Technology - AQUA, 2021, 70, 138-154.	0.6	10
90	Aquifer storage capacity and maximum annual yield from long-term aquifer fluxes. Hydrogeology Journal, 2008, 16, 399-403.	0.9	9

#	Article	IF	CITATIONS
91	Derivation Approaches for the Theis (1935) Equation. Ground Water, 2010, 48, 2-5.	0.7	9
92	Optimal In Situ Bioremediation Design of Groundwater Contaminated with Dissolved Petroleum Hydrocarbons. Journal of Hazardous, Toxic, and Radioactive Waste, 2016, 20, 04015021.	1.2	9
93	Logical genetic programming (LGP) application to water resources management. Environmental Monitoring and Assessment, 2020, 192, 34.	1.3	9
94	A multi-objective optimization model for operation of intermittent water distribution networks. Water Science and Technology: Water Supply, 2020, 20, 2630-2647.	1.0	9
95	Simulation-Optimization of Reservoir Water Quality under Climate Change. Journal of Water Resources Planning and Management - ASCE, 2021, 147, .	1.3	9
96	Evaluation of cooperative and non-cooperative game theoretic approaches for water allocation of transboundary rivers. Scientific Reports, 2022, 12, 3991.	1.6	9
97	Multi-Criteria Environmental Impact Assessment of Alternative Irrigation Networks with an Adopted Matrix-Based Method. Water Resources Management, 2017, 31, 903-928.	1.9	8
98	Simulating thermal stratification and modeling outlet water temperature in reservoirs with a data-mining method. Journal of Water Supply: Research and Technology - AQUA, 2019, 68, 7-19.	0.6	8
99	Comparison of methods to calculate evaporation from reservoirs. International Journal of River Basin Management, 2020, 18, 1-12.	1.5	8
100	Semi-empirical prediction method for monthly precipitation prediction based on environmental factors and comparison with stochastic and machine learning models. Hydrological Sciences Journal, 2020, 65, 1928-1942.	1.2	8
101	Setting the Flow Accumulation Threshold Based on Environmental and Morphologic Features to Extract River Networks from Digital Elevation Models. ISPRS International Journal of Geo-Information, 2021, 10, 186.	1.4	8
102	Multi-criteria Decision-making Approach for Environmental Impact Assessment to Reduce the Adverse Effects Of Dams. Water Resources Management, 2021, 35, 4085-4110.	1.9	8
103	Development of a Sample Multiattribute and Multireservoir System for Testing Operational Models. Journal of Irrigation and Drainage Engineering - ASCE, 2016, 142, 04015039.	0.6	7
104	Optimized cropping patterns under climate-change conditions. Climatic Change, 2017, 143, 429-443.	1.7	7
105	Impacts of Climate Change on the Conflict between Water Resources and Agricultural Water Use. Journal of Irrigation and Drainage Engineering - ASCE, 2017, 143, 02516002.	0.6	7
106	Regional Precipitation Model Based on Geographically and Temporally Weighted Regression Kriging. Remote Sensing, 2020, 12, 2547.	1.8	7
107	Application of a new hybrid non-linear Muskingum model to flood routing. Water Management, 2020, 173, 109-120.	0.4	7
108	A state-of-the-art review of water diplomacy. Environment, Development and Sustainability, 2021, 23, 2337-2357.	2.7	7

7

#	Article	IF	CITATIONS
109	A review of conjunctive GW-SW management by simulation–optimization tools. Journal of Water Supply: Research and Technology - AQUA, 2021, 70, 239-256.	0.6	7
110	Developing water, energy, and food sustainability performance indicators for agricultural systems. Scientific Reports, 2021, 11, 22831.	1.6	7
111	System dynamics modeling of lake water management under climate change. Scientific Reports, 2022, 12, 5828.	1.6	7
112	Construction Risk Management of Irrigation Dams. Journal of Irrigation and Drainage Engineering - ASCE, 2016, 142, .	0.6	6
113	Development and application of the anarchic society algorithm (ASO) to the optimal operation of water distribution networks. Water Science and Technology: Water Supply, 2018, 18, 318-332.	1.0	6
114	Assessment of potential of intraregional conflicts by developing a transferability index for inter-basin water transfers, and their impacts on the water resources. Environmental Monitoring and Assessment, 2020, 192, 40.	1.3	6
115	Self-optimizer data-mining method for aquifer level prediction. Water Science and Technology: Water Supply, 2020, 20, 724-736.	1.0	6
116	Reliability-Based Multi-Objective Optimization of Groundwater Remediation. Water Resources Management, 2020, 34, 3079-3097.	1.9	6
117	Application of bi-objective genetic programming for optimizing irrigation rules using two reservoir performance criteria. International Journal of River Basin Management, 2021, 19, 55-65.	1.5	6
118	Integration of Gray System Theory with AHP Decision-Making for Wastewater Reuse Decision-Making. Journal of Hazardous, Toxic, and Radioactive Waste, 2021, 25, .	1.2	6
119	Time-Based Vulnerability: A Step Forward to Operate Water Resources Systems. Journal of Irrigation and Drainage Engineering - ASCE, 2016, 142, 02516001.	0.6	5
120	Locating and Prioritizing Suitable Places for the Implementation of Artificial Groundwater Recharge Plans. Journal of Irrigation and Drainage Engineering - ASCE, 2017, 143, 04017018.	0.6	5
121	Multiobjective Optimal Operation of Gated Spillways. Journal of Irrigation and Drainage Engineering - ASCE, 2017, 143, .	0.6	5
122	Choosing an Optimization Method for Water Resources Problems Based on the Features of Their Solution Spaces. Journal of Irrigation and Drainage Engineering - ASCE, 2018, 144, .	0.6	5
123	Allocation of reservoir releases under drought conditions: a conflict-resolution approach. Water Management, 2019, 172, 218-228.	0.4	5
124	Optimizing urban stormwater control strategies and assessing aquifer recharge through drywells in an urban watershed. Hydrogeology Journal, 2021, 29, 1379-1398.	0.9	5
125	Adaptive Determination of the Flow Accumulation Threshold for Extracting Drainage Networks from DEMs. Remote Sensing, 2021, 13, 2024.	1.8	5
126	Analysis of long-term strategies of riparian countries in transboundary river basins. Scientific Reports, 2021, 11, 20199.	1.6	5

#	Article	IF	CITATIONS
127	Development of Real-Time Conjunctive Use Operation Rules for Aquifer-Reservoir Systems. Water Resources Management, 2015, 29, 1887-1906.	1.9	4
128	Closure to "Assimilative Capacity and Flow Dilution for Water Quality Protection in Rivers―by Mostafa Farhadian, Omid Bozorg Haddad, Samaneh Seifollahi-Aghmiuni, and Hugo A. Loáiciga. Journal of Hazardous, Toxic, and Radioactive Waste, 2015, 19, .	1.2	4
129	Equation to Predict Riverine Transport of Suddenly Discharged Pollutants. Journal of Irrigation and Drainage Engineering - ASCE, 2016, 142, .	0.6	4
130	Nonlinear Muskingum Model for Flood Routing in Irrigation Canals Using Storage Moving Average. Journal of Irrigation and Drainage Engineering - ASCE, 2016, 142, .	0.6	4
131	Effect of Hydraulic Conductivity Uncertainty on In Situ Bioremediation of Groundwater Contaminated with Dissolved Petroleum Hydrocarbons. Journal of Irrigation and Drainage Engineering - ASCE, 2017, 143, .	0.6	4
132	Analysis of the effect of inputs uncertainty on riverine water temperature predictions with a Markov chain Monte Carlo (MCMC) algorithm. Environmental Monitoring and Assessment, 2020, 192, 100.	1.3	4
133	Fulfillment of river environmental flow: applying Nash theory for quantitativeâ€qualitative conflict resolution in reservoir operation. Water and Environment Journal, 2021, 35, 486-499.	1.0	4
134	Intense extreme hydro-climatic events take a toll on society. Natural Hazards, 2021, 108, 2385-2391.	1.6	4
135	Assessment of global hydro-social indicators in water resources management. Scientific Reports, 2021, 11, 17424.	1.6	4
136	Optimal merging of multi-satellite precipitation data in urban areas. Theoretical and Applied Climatology, 2022, 147, 1697-1712.	1.3	4
137	Watershed Hydrology, 2nd Edition. Eos, 1996, 77, 340.	0.1	3
138	Radially convergent groundwater flow in sloping terrain. Hydrological Sciences Journal, 2006, 51, 700-712.	1.2	3
139	Phreatic Surface in Island Aquifers with Regular Geometry and Time-Independent Recharge andÂPumping. Mathematical Geosciences, 2008, 40, 199-211.	1.4	3
140	<scp>CO₂</scp> Capture and Geologic Storage: TheÂPossibilities. Ground Water, 2013, 51, 816-821.	0.7	3
141	Probability Distributions in Groundwater Hydrology: Methods and Applications. Journal of Hydrologic Engineering - ASCE, 2015, 20, 04014063.	0.8	3
142	Discussion of "Optimization of Phenol Removal Using Ti/PbO2 Anode with Response Surface Methodology―by C. GarcÃa-Gómez, J. A. Vidales-Contreras, J. Nápoles-Armenta, and P. Gortáres-Moroyoqui. Journal of Environmental Engineering, ASCE, 2017, 143, .	0.7	3
143	Unionism and Water Resources Management. Journal of Irrigation and Drainage Engineering - ASCE, 2017, 143, .	0.6	3
144	Upstream flood pattern recognition based on downstream events. Environmental Monitoring and Assessment, 2018, 190, 306.	1.3	3

#	Article	IF	CITATIONS
145	System dynamics applied to water management in lakes *. Irrigation and Drainage, 2020, 69, 956-966.	0.8	3
146	Dryland farming improvement by considering the relation between rainfall variability and crop yield. Environment, Development and Sustainability, 2021, 23, 5316-5327.	2.7	3
147	Use of surface water and groundwater under climate change: Khorramabad basin, Iran. Water Management, 2023, 176, 53-65.	0.4	3
148	Planning Urban Growth in Ground Water Recharge Areas: Central Valley, Costa Rica. Ground Water Monitoring and Remediation, 1995, 15, 144-148.	0.6	2
149	Reply to comment by K. Caldeira et al. on "Modernâ€age buildup of CO ₂ and its effects on seawater acidity and salinity― Geophysical Research Letters, 2007, 34, .	1.5	2
150	The Effect of the Earth's Rotation on Ground Water Motion. Ground Water, 2007, 45, 98-100.	0.7	2
151	Application of Data Mining Tools for Long-Term Quantitative and Qualitative Prediction of Streamflow. Journal of Irrigation and Drainage Engineering - ASCE, 2016, 142, 04016061.	0.6	2
152	Role of Adaptive Water Resources Management Policies and Strategies in Relieving Conflicts between Water Resources and Agricultural Sector Water Use Caused by Climate Change. Journal of Irrigation and Drainage Engineering - ASCE, 2017, 143, 02516004.	0.6	2
153	Closure to "Equation to Predict Riverine Transport of Suddenly Discharged Pollutants―by Mostafa Farhadian, Omid Bozorg-Haddad, Samaneh Seifollahi-Aghmiuini, and Hugo A. LoÃjiciga. Journal of Irrigation and Drainage Engineering - ASCE, 2018, 144, .	0.6	2
154	Closure to "Parameter Estimation of Extended Nonlinear Muskingum Models with the Weed Optimization Algorithm―by Farzan Hamedi, Omid Bozorg-Haddad, Maryam Pazoki, Hamid-Reza Asgari, Mehran Parsa, and Hugo A. LoÃjiciga. Journal of Irrigation and Drainage Engineering - ASCE, 2018, 144, .	0.6	2
155	Closure to "Development of a Comparative Multiple Criteria Framework for Ranking Pareto Optimal Solutions of a Multiobjective Reservoir Operation Problem―by Omid Bozorg-Haddad, Ali Azarnivand, Seyed-Mohammad Hosseini-Moghari, and Hugo A. LoÃjiciga. Journal of Irrigation and Drainage Engineering - ASCE 2018, 144	0.6	2
156	Groundwater safe yield powered by clean wind energy. Environmental Monitoring and Assessment, 2020, 192, 419.	1.3	2
157	Sensitivity of non-conditional climatic variables to climate-change deep uncertainty using Markov Chain Monte Carlo simulation. Scientific Reports, 2022, 12, 1813.	1.6	2
158	Remedies proposed for China's groundwater problems. Eos, 1995, 76, 421-421.	0.1	1
159	Ground-Water/Surface-Water Interactions in a Karst Aquifer. , 2001, , 150.		1
160	Approach to Control the Depth of Water in Basin Irrigation and Wetland Flooding. Journal of Irrigation and Drainage Engineering - ASCE, 2007, 133, 500-504.	0.6	1
161	Evaluation of the Safe Yield of Groundwater Production Derived from Wind Energy. Journal of Energy Engineering - ASCE, 2015, 141, 04014045.	1.0	1
162	Application of Wind Energy to Withdraw Groundwater for Irrigation Management. Journal of Water Resources Planning and Management - ASCE, 2016, 142, 04016058.	1.3	1

#	Article	IF	CITATIONS
163	Discussion of "Reservoir Flood Season Segmentation and Optimal Operation of Flood-Limiting Water Levels―by Haiyan Jiang, Zhongbo Yu, and Chongxun Mo. Journal of Hydrologic Engineering - ASCE, 2016, 21, .	0.8	1
164	Investigation of Climatic Variability with Hybrid Statistical Analysis. Water Resources Management, 2017, 31, 341-353.	1.9	1
165	Discussion of "Multiobjective Management of Water Allocation to Sustainable Irrigation Planning and Optimal Cropping Pattern―by R. Lalehzari, S. Boroomand Nasab, H. Moazed, and A. Haghighi. Journal of Irrigation and Drainage Engineering - ASCE, 2017, 143, 07016023.	0.6	1
166	Seepage Face in Steady-State Groundwater Flow between Two Water Bodies. Journal of Hydrologic Engineering - ASCE, 2020, 25, 06020005.	0.8	1
167	Uncertainties in agricultural water supply under climate change: Aidoghmoush basin, Iran. Water Management, 2021, 174, 120-133.	0.4	1
168	Water resources professionals discuss challenges ahead for the 21st century. Eos, 1996, 77, 235.	0.1	0
169	Hydrologists, ocean scientists team up to study groundwater discharge to the coast. Eos, 1996, 77, 394.	0.1	0
170	Discussion of "Optimization of Water Diversion Based on Reservoir Operating Rules: Analysis of the Biliu River Reservoir, China―by Xueping Zhu, Chi Zhang, Junxian Yin, Huicheng Zhou, and Yunzhong Jiang. Journal of Hydrologic Engineering - ASCE, 2015, 20, 07015002.	0.8	0
171	Closure to "Application of a Hybrid Optimization Method in Muskingum Parameter Estimation―by Omid Bozorg Haddad, Farzan Hamedi, Elahe Fallah-Mehdipour, Hosein Orouji, and Miguel A. Mariño. Journal of Irrigation and Drainage Engineering - ASCE, 2016, 142, 07016010.	0.6	0
172	Closure to "Investigation of Reservoir Qualitative Behavior Resulting from Sudden Entry of Biological Pollutant―by Omid Bozorg-Haddad, Parisa-Sadat Ashofteh, Mohsen Ali-Hamzeh, and Miguel A. Mariño. Journal of Irrigation and Drainage Engineering - ASCE, 2016, 142, 07016004.	0.6	0
173	Closure to "Simulation of Methyl Tertiary Butyl Ether Concentrations in River-Reservoir Systems Using Support Vector Regression―by Mahyar Aboutalebi, Omid Bozorg-Haddad, and Hugo A. LoÃjiciga. Journal of Irrigation and Drainage Engineering - ASCE, 2017, 143, 07017004.	0.6	0
174	Closure to "Modified Firefly Algorithm for Solving Multireservoir Operation in Continuous and Discrete Domains―by Irene Garousi-Nejad, Omid Bozorg-Haddad, and Hugo A. Loáiciga. Journal of Water Resources Planning and Management - ASCE, 2017, 143, 07017005.	1.3	0
175	Closure to "Application of Genetic Programming to Flow Routing in Simple and Compound Channels― by Elahe Fallah-Mehdipour, Omid Bozorg-Haddad, Hossein Orouji, and Miguel A. Mariño. Journal of Irrigation and Drainage Engineering - ASCE, 2018, 144, 07018016.	0.6	0
176	Closure to "Application of the Firefly Algorithm to Optimal Operation of Reservoirs with the Purpose of Irrigation Supply and Hydropower Production―by Irene Garousi-Nejad, Omid Bozorg-Haddad, Hugo A. LoA¡iciga, and Miguel A. Mariño. Journal of Irrigation and Drainage Engineering - ASCE, 2018, 144, 07017020.	0.6	0
177	Closure to "Optimal Operation of Water Distribution Networks under Water Shortage Considering Water Quality―by Mohammad Solgi, Omid Bozorg-Haddad, Samaneh Seifollahi-Aghmiuni, Parisa Ghasemi-Abiazani, and Hugo A. LoÃjiciga. Journal of Pipeline Systems Engineering and Practice, 2018, 9, 07017002	0.9	0
178	Discussion of "Design and Evaluation of Irrigation Water Pricing Policies for Enhanced Water Use Efficiency―by Sayed Ali Ohab-Yazdi and Azadeh Ahmadi. Journal of Water Resources Planning and Management - ASCE, 2018, 144, 07018001.	1.3	0
179	Presentation and validation of induction irrigation as an efficient and profitable method. Water Science and Technology: Water Supply, 2020, 20, 1349-1355.	1.0	0
180	Hyperion Water Reclamation Plant (HWRP): Air Emission Control System at Hyperion BioEnergy Facility (HBEF) Using Catalytic Oxidation (CO) and Selective Catalytic Reduction (SCR) in the City of Los Angeles, California. , 2022, , .		0