Kay L Double

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1778999/publications.pdf

Version: 2024-02-01

168829 145109 3,982 68 31 60 h-index citations g-index papers 73 73 73 5969 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Unraveling the Physiological Correlates of Mental Workload Variations in Tracking and Collision Prediction Tasks. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 770-781.	2.7	5
2	A brief history of brain iron accumulation in Parkinson disease and related disorders. Journal of Neural Transmission, 2022, 129, 505-520.	1.4	20
3	Altered SOD1 maturation and post-translational modification in amyotrophic lateral sclerosis spinal cord. Brain, 2022, 145, 3108-3130.	3.7	25
4	Empirical evidence for biometal dysregulation in Parkinson's disease from a systematic review and Bradford Hill analysis. Npj Parkinson's Disease, 2022, 8, .	2.5	4
5	Superoxide Dismutase 1 in Health and Disease: How a Frontline Antioxidant Becomes Neurotoxic. Angewandte Chemie, 2021, 133, 9299-9330.	1.6	5
6	Superoxide Dismutase 1 in Health and Disease: How a Frontline Antioxidant Becomes Neurotoxic. Angewandte Chemie - International Edition, 2021, 60, 9215-9246.	7.2	80
7	Iron-Induced Dopaminergic Cell Death In Vivo as a Model of Parkinson's Disease. , 2021, , 1-10.		1
8	Measurement of the adult human midbrain with transcranial ultrasound. PLoS ONE, 2021, 16, e0247920.	1.1	5
9	Native Separation and Metallation Analysis of SOD1 Protein from the Human Central Nervous System: a Methodological Workflow. Analytical Chemistry, 2021, 93, 11108-11115.	3.2	6
10	Metaâ€Analysis of Copper and Iron in Parkinson's Disease Brain and Biofluids. Movement Disorders, 2020, 35, 662-671.	2.2	51
11	Simultaneous structural and elemental nano-imaging of human brain tissue. Chemical Science, 2020, 11, 8919-8927.	3.7	12
12	Oxidative stress in the aging substantia nigra and the etiology of Parkinson's disease. Aging Cell, 2019, 18, e13031.	3.0	403
13	Expression of tyrosine hydroxylase isoforms and phosphorylation at serine 40 in the human nigrostriatal system in Parkinson's disease. Neurobiology of Disease, 2019, 130, 104524.	2.1	20
14	Reduction in IGF1 mRNA in the Human Subependymal Zone During Aging. , 2019, 10, 197.		12
15	Levels of glial cell lineâ€derived neurotrophic factor are decreased, but fibroblast growth factor 2 and cerebral dopamine neurotrophic factor are increased in the hippocampus in Parkinson's disease. Brain Pathology, 2019, 29, 813-825.	2.1	24
16	Accumulation of dysfunctional SOD1 protein in Parkinson's disease is not associated with mutations in the SOD1 gene. Acta Neuropathologica, 2018, 135, 155-156.	3.9	23
17	Analogues of desferrioxamine B designed to attenuate iron-mediated neurodegeneration: synthesis, characterisation and activity in the MPTP-mouse model of Parkinson's disease. Metallomics, 2017, 9, 852-864.	1.0	23
18	Amyotrophic lateral sclerosis-like superoxide dismutase 1 proteinopathy is associated with neuronal loss in Parkinson's disease brain. Acta Neuropathologica, 2017, 134, 113-127.	3.9	78

#	Article	IF	Citations
19	Subcellular compartmentalisation of copper, iron, manganese, and zinc in the Parkinson's disease brain. Metallomics, 2017, 9, 1447-1455.	1.0	89
20	Evidence for reduced neurogenesis in the aging human hippocampus despite stable stem cell markers. Aging Cell, 2017, 16, 1195-1199.	3.0	100
21	Excessive early-life dietary exposure: a potential source of elevated brain iron and a risk factor for Parkinson's disease. Npj Parkinson's Disease, 2017, 3, 1.	2.5	60
22	Reducing the burden of neurological disease and mental illness. Medical Journal of Australia, 2017, 206, 341-342.	0.8	0
23	Decline in Proliferation and Immature Neuron Markers in the Human Subependymal Zone during Aging: Relationship to EGF- and FGF-Related Transcripts. Frontiers in Aging Neuroscience, 2016, 8, 274.	1.7	41
24	Copper dyshomoeostasis in Parkinson's disease: implications for pathogenesis and indications for novel therapeutics. Clinical Science, 2016, 130, 565-574.	1.8	98
25	Tension-referenced measures of gastrocnemius slack length and stiffness in Parkinson's disease. Movement Disorders, 2016, 31, 1914-1918.	2.2	1
26	Iron and dopamine: a toxic couple. Brain, 2016, 139, 1026-1035.	3.7	208
27	Testosterone attenuates and the selective estrogen receptor modulator, raloxifene, potentiates amphetamine-induced locomotion in male rats. Hormones and Behavior, 2015, 70, 73-84.	1.0	14
28	Comparative Study of Metal Quantification in Neurological Tissue Using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Imaging and X-ray Fluorescence Microscopy. Analytical Chemistry, 2015, 87, 6639-6645.	3.2	39
29	Using Sepia melanin as a PD model to describe the binding characteristics of neuromelanin $\hat{a}\in$ A critical review. Journal of Chemical Neuroanatomy, 2015, 64-65, 20-32.	1.0	42
30	Upper limb function is normal in patients with restless legs syndrome (Willis-Ekbom Disease). Clinical Neurophysiology, 2015, 126, 736-742.	0.7	3
31	Testosterone Induces Molecular Changes in Dopamine Signaling Pathway Molecules in the Adolescent Male Rat Nigrostriatal Pathway. PLoS ONE, 2014, 9, e91151.	1.1	80
32	Hand function is impaired in healthy older adults at risk of Parkinson's disease. Journal of Neural Transmission, 2014, 121, 1377-1386.	1.4	3
33	Copper pathology in vulnerable brain regions in Parkinson's disease. Neurobiology of Aging, 2014, 35, 858-866.	1.5	188
34	Hippocampal Lewy pathology and cholinergic dysfunction are associated with dementia in Parkinson's disease. Brain, 2014, 137, 2493-2508.	3.7	232
35	Iron-Induced Dopaminergic Cell Death In Vivo as a Model of Parkinson's Disease. , 2014, , 2065-2073.		0
36	Variability in neuronal expression of dopamine receptors and transporters in the substantia nigra. Movement Disorders, 2013, 28, 1351-1359.	2.2	20

#	Article	IF	Citations
37	Trophic factors differentiate dopamine neurons vulnerable to Parkinson's disease. Neurobiology of Aging, 2013, 34, 873-886.	1.5	44
38	Localization of copper and copper transporters in the human brain. Metallomics, 2013, 5, 43-51.	1.0	121
39	Endogenous progesterone levels and frontotemporal dementia: modulation of TDP-43 and Tau levels in vitro and treatment of the A315T TARDBP mouse model. DMM Disease Models and Mechanisms, 2013, 6, 1198-204.	1.2	10
40	Neuronal vulnerability in Parkinson's disease. Parkinsonism and Related Disorders, 2012, 18, S52-S54.	1.1	49
41	l-DOPA is incorporated into brain proteins of patients treated for Parkinson's disease, inducing toxicity in human neuroblastoma cells in vitro. Experimental Neurology, 2012, 238, 29-37.	2.0	41
42	Testosterone regulation of sex steroid-related mRNAs and dopamine-related mRNAs in adolescent male rat substantia nigra. BMC Neuroscience, 2012, 13, 95.	0.8	94
43	Substantia Nigra, Ventral Tegmental Area, and Retrorubral Fields. , 2012, , 439-455.		23
44	GIRK2 expression in dopamine neurons of the substantia nigra and ventral tegmental area. Journal of Comparative Neurology, 2012, 520, 2591-2607.	0.9	76
45	Low Serum Progranulin Predicts the Presence of Mutations: A Prospective Study. Journal of Alzheimer's Disease, 2010, 22, 981-984.	1.2	54
46	Pigmentation in the human brain and risk of Parkinson's disease. Annals of Neurology, 2010, 67, 553-554.	2.8	4
47	Effect of age on proliferationâ€regulating factors in human adult neurogenic regions. Journal of Neurochemistry, 2010, 115, 956-964.	2.1	24
48	A53T-Alpha-Synuclein Overexpression Impairs Dopamine Signaling and Striatal Synaptic Plasticity in Old Mice. PLoS ONE, 2010, 5, e11464.	1.1	119
49	Pathophysiology of Transcranial Sonography Signal Changes in the Human Substantia Nigra. International Review of Neurobiology, 2010, 90, 107-120.	0.9	8
50	Haplotype analysis of the IGF2â€INSâ€TH gene cluster in Parkinson's disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 495-499.	1.1	17
51	Neuromelanin-bound ferric iron as an experimental model of dopaminergic neurodegeneration in Parkinson's disease. Parkinsonism and Related Disorders, 2008, 14, S185-S188.	1.1	30
52	Intracellular Chemical Imaging of the Developmental Phases of Human Neuromelanin Using Synchrotron X-ray Microspectroscopy. Analytical Chemistry, 2008, 80, 9557-9566.	3.2	100
53	Neuromelanin, ein Pigment mit unbekannter Funktion. E-Neuroforum, 2006, 12, 190-196.	0.2	1
54	The Role of Iron in the Pathogenesis of Parkinson's Disease. , 2006, , 125-149.		11

#	Article	IF	CITATIONS
55	Dolichol is the major lipid component of human substantia nigra neuromelanin. Journal of Neurochemistry, 2005, 92, 990-995.	2.1	61
56	Differential effects of human neuromelanin and synthetic dopamine melanin on neuronal and glial cells. Journal of Neurochemistry, 2005, 95, 599-608.	2.1	28
57	\hat{l}_{\pm} -Synuclein redistributes to neuromelanin lipid in the substantia nigra early in Parkinson's disease. Brain, 2005, 128, 2654-2664.	3.7	187
58	The Relevance of Iron in the Pathogenesis of Parkinson's Disease. Annals of the New York Academy of Sciences, 2004, 1012, 193-208.	1.8	285
59	Neuromelanin and its interaction with iron as a potential risk factor for dopaminergic neurodegeneration underlying Parkinson's disease. Neurotoxicity Research, 2003, 5, 35-43.	1.3	103
60	Iron-binding characteristics of neuromelanin of the human substantia nigra. Biochemical Pharmacology, 2003, 66, 489-494.	2.0	189
61	Identifying the Pattern of Olfactory Deficits in Parkinson Disease Using the Brief Smell Identification Test. Archives of Neurology, 2003, 60, 545.	4.9	172
62	Iron, Neuromelanin, and α-Synuclein in Neuropathogenesis of Parkinson's Disease., 2003,, 343-364.		1
63	Strategies for the protection of dopaminergic neurons against neurotoxicity. Neurotoxicity Research, 2000, 2, 99-114.	1.3	25
64	The industrial chemical Tinuvin 123 does not induce dopaminergic neurotoxicity in C57Bl/6 mice. Neuroscience Letters, 2000, 278, 165-168.	1.0	5
65	Neuromelanin may Mediate Neurotoxicity via its Interaction with Redox Active Iron., 2000,, 211-218.		4
66	Quantitative electromyographic changes following modification of central dopaminergic transmission. Brain Research, 1993, 604, 342-344.	1.1	16
67	Effects of inactivation of D1 dopamine receptors on stereotypic and thermic responses to quinpirole (LY 171555). Neuroscience Letters, 1990, 115, 81-85.	1.0	14
68	Antidepressant effects of rolipram in a genetic animal model of depression: Cholinergic supersensitivity and weight gain. Pharmacology Biochemistry and Behavior, 1989, 34, 691-696.	1.3	41