Periklis Papadopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1778945/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How superhydrophobicity breaks down. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3254-3258.	7.1	397
2	Direct observation of drops on slippery lubricant-infused surfaces. Soft Matter, 2015, 11, 7617-7626.	2.7	323
3	Design principles for superamphiphobic surfaces. Soft Matter, 2013, 9, 418-428.	2.7	196
4	Self-Assembly and Dynamics of Poly(\hat{I}^3 -benzyl-l-glutamate) Peptides. Biomacromolecules, 2004, 5, 81-91.	5.4	183
5	Hierarchical Self-Assembly of Poly(\hat{I}^3 -benzyl-l-glutamate) \hat{a}^2 Poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 3673-3683.	Tf 50 587 4.8	Td (glyco)) 178
6	Characterization of super liquid-repellent surfaces. Current Opinion in Colloid and Interface Science, 2014, 19, 343-354.	7.4	151
7	Dynamic Measurement of the Force Required to Move a Liquid Drop on a Solid Surface. Langmuir, 2012, 28, 16812-16820.	3.5	119
8	Charge transport and diffusion of ionic liquids in nanoporous silica membranes. Physical Chemistry Chemical Physics, 2010, 12, 13798.	2.8	109
9	Liquid Drops Impacting Superamphiphobic Coatings. Langmuir, 2013, 29, 7847-7856.	3.5	103
10	Super liquid-repellent gas membranes for carbon dioxide capture and heart–lung machines. Nature Communications, 2013, 4, 2512.	12.8	98
11	Synthesis of Mesoporous Supraparticles on Superamphiphobic Surfaces. Advanced Materials, 2015, 27, 7338-7343.	21.0	91
12	Interfacial Energy and Glass Temperature of Polymers Confined to Nanoporous Alumina. Macromolecules, 2016, 49, 7400-7414.	4.8	90
13	Wetting on the Microscale: Shape of a Liquid Drop on a Microstructured Surface at Different Length Scales. Langmuir, 2012, 28, 8392-8398.	3.5	74
14	Magnetically Actuated Micropatterns for Switchable Wettability. ACS Applied Materials & Interfaces, 2014, 6, 8702-8707.	8.0	73
15	Nanodomain-Induced Chain Folding in Poly(γ-benzyl-l-glutamate)-b-polyglycine Diblock Copolymers. Biomacromolecules, 2005, 6, 2352-2361.	5.4	64
16	The role of temperature and density on the glass-transition dynamics of glass formers. Journal of Chemical Physics, 2006, 124, 074905.	3.0	58
17	Energy Dissipation of Moving Drops on Superhydrophobic and Superoleophobic Surfaces. Langmuir, 2017, 33, 107-116.	3.5	57
18	Origin of Glass Transition of Poly(2-vinylpyridine). A Temperature- and Pressure-Dependent Dielectric Spectroscopy Study. Macromolecules, 2004, 37, 8116-8122.	4.8	56

Periklis Papadopoulos

#	Article	IF	CITATIONS
19	Structure-property relationships in major ampullate spider silk as deduced from polarized FTIR spectroscopy. European Physical Journal E, 2007, 24, 193-199.	1.6	56
20	Hierarchies in the structural organization of spider silk—a quantitative model. Colloid and Polymer Science, 2009, 287, 231-236.	2.1	53
21	Mussel collagen molecules with silk-like domains as load-bearing elements in distal byssal threads. Journal of Structural Biology, 2011, 175, 339-347.	2.8	51
22	Effect of Nanoroughness on Highly Hydrophobic and Superhydrophobic Coatings. Langmuir, 2012, 28, 15005-15014.	3.5	50
23	Nonlinear control of high-frequency phonons in spider silk. Nature Materials, 2016, 15, 1079-1083.	27.5	49
24	Combined structural model of spider dragline silk. Soft Matter, 2009, 5, 4568.	2.7	48
25	3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces. Scientific Reports, 2016, 6, 23687.	3.3	48
26	Microdroplet Contaminants: When and Why Superamphiphobic Surfaces Are Not Self-Cleaning. ACS Nano, 2020, 14, 3836-3846.	14.6	47
27	<i>Salvinia</i> -like slippery surface with stable and mobile water/air contact line. National Science Review, 2021, 8, nwaa153.	9.5	47
28	Super liquid-repellent layers: The smaller the better. Advances in Colloid and Interface Science, 2015, 222, 104-109.	14.7	46
29	Similarities in the Structural Organization of Major and Minor Ampullate Spider Silk. Macromolecular Rapid Communications, 2009, 30, 851-857.	3.9	40
30	Shape of a sessile drop on a flat surface covered with a liquid film. Soft Matter, 2017, 13, 3760-3767.	2.7	40
31	Thermodynamic Confinement and α-Helix Persistence Length in Poly(γ-benzyl-l-glutamate)-b-poly(dimethyl) Tj ET	ГQ _{q1} 10.7	784314 rgBT
32	Solventâ€Free Synthesis of Microparticles on Superamphiphobic Surfaces. Angewandte Chemie - International Edition, 2013, 52, 11286-11289.	13.8	38
33	Driving Droplets on Liquid Repellent Surfaces via Lightâ€Đriven Marangoni Propulsion. Advanced Functional Materials, 2022, 32, .	14.9	35
34	"Glass transition―in peptides: Temperature and pressure effects. Journal of Chemical Physics, 2005, 122, 224906.	3.0	34
35	Wetting of soft superhydrophobic micropillar arrays. Soft Matter, 2018, 14, 7429-7434.	2.7	34
36	Self-Assembly and Molecular Dynamics of Peptide-Functionalized Polyphenylene Dendrimers. Macromolecules, 2006, 39, 9605-9613.	4.8	32

PERIKLIS PAPADOPOULOS

#	Article	IF	CITATIONS
37	Single colloid electrophoresis. Journal of Colloid and Interface Science, 2009, 337, 260-264.	9.4	32
38	Electromechanical Properties of Smectic C* Liquid Crystal Elastomers under Shear. Macromolecules, 2010, 43, 6666-6670.	4.8	32
39	Molecular dynamics of oligofluorenes: A dielectric spectroscopy investigation. Journal of Chemical Physics, 2004, 120, 2368-2374.	3.0	30
40	Superamphiphobic Particles: How Small Can We Go?. Physical Review Letters, 2014, 112, 016101.	7.8	27
41	Detaching Microparticles from a Liquid Surface. Physical Review Letters, 2018, 121, 048002.	7.8	27
42	Functional superhydrophobic surfaces made of Janus micropillars. Soft Matter, 2015, 11, 506-515.	2.7	26
43	Intra- and inter-molecular dynamics in glass-forming liquids. Soft Matter, 2013, 9, 1600-1603.	2.7	25
44	Optimization of superamphiphobic layers based on candle soot. Pure and Applied Chemistry, 2014, 86, 87-96.	1.9	23
45	Electrokinetics on superhydrophobic surfaces. Journal of Physics Condensed Matter, 2012, 24, 464110.	1.8	21
46	Transition Moment Orientation Analysis on a Smectic C Liquid Crystalline Elastomer film. Macromolecules, 2010, 43, 7532-7539.	4.8	20
47	Molecular dynamics and morphology of confined 4-heptyl-4′-isothiocyanatobiphenyl liquid crystals. Soft Matter, 2012, 8, 5194.	2.7	19
48	Long-Term Repellency of Liquids by Superoleophobic Surfaces. Physical Review Letters, 2016, 117, 046102.	7.8	18
49	Understanding the Formation of Anisometric Supraparticles: A Mechanistic Look Inside Droplets Drying on a Superhydrophobic Surface. Langmuir, 2016, 32, 6902-6908.	3.5	14
50	Checking for voice disorders without clinical intervention: The Greek and global VHI thresholds for voice disordered patients. Scientific Reports, 2019, 9, 9366.	3.3	14
51	Partial deuteration probing structural changes in supercontracted spider silk. Polymer, 2010, 51, 4784-4789.	3.8	13
52	IR transition moment orientational analysis on semi-crystalline polyethylene films. Polymer, 2011, 52, 6061-6065.	3.8	13
53	Pressure-Dependent FTIR-Spectroscopy on the Counterbalance between External and Internal Constraints in Spider Silk of Nephila pilipes. Macromolecules, 2013, 46, 4919-4923.	4.8	13
54	The Cassie-Wenzel transition of fluids on nanostructured substrates: Macroscopic force balance versus microscopic density-functional theory. Journal of Chemical Physics, 2016, 145, 134703.	3.0	13

Periklis Papadopoulos

#	Article	IF	CITATIONS
55	Supercontraction in Nephila spider dragline silk – Relaxation into equilibrium state. Polymer, 2011, 52, 6056-6060.	3.8	12
56	Structure changes in Nephila dragline: The influence of pressure. Polymer, 2012, 53, 5507-5512.	3.8	12
57	Impact of substrate elasticity on contact angle saturation in electrowetting. Soft Matter, 2021, 17, 4335-4341.	2.7	10
58	Dynamics of Structure Formation in a Discotic Liquid Crystal by Infrared Spectroscopy and Related Techniques. Journal of Physical Chemistry B, 2011, 115, 14919-14927.	2.6	9
59	Transparent and airtight silica nano- and microchannels with uniform tubular cross-section. Soft Matter, 2013, 9, 9824.	2.7	7
60	Quantitative analysis of infrared absorption coefficient of spider silk fibers. Vibrational Spectroscopy, 2011, 57, 207-212.	2.2	6
61	Colloids in external electric and magnetic fields: Colloidal crystals, pinning, chain formation, and electrokinetics. European Physical Journal: Special Topics, 2013, 222, 2881-2893.	2.6	6
62	Pinning-induced Variations of the Contact Angle of Drops on Microstructured Surfaces. Chemistry Letters, 2012, 41, 1343-1345.	1.3	5
63	Ionic concentration- and pH-dependent electrophoretic mobility as studied by single colloid electrophoresis. Journal of Physics Condensed Matter, 2010, 22, 494109.	1.8	4
64	Wetting on the Microscale: Shape of a Liquid Drop on a Microstructured Surface at Different Length Scales. Langmuir, 2012, 28, 10136-10139.	3.5	4
65	DEVELOPMENT AND VALIDATION OF A REVERSED-PHASE HPLC METHOD FOR THE DETERMINATION OF PINDOLOL AND CLOPAMIDE IN TABLETS. Journal of Liquid Chromatography and Related Technologies, 2002, 25, 125-136.	1.0	3
66	Self-assembly of polypeptides. The effect of thermodynamic confinement. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2007, , 447-455.	0.1	2
67	Self-Assembly and the Associated Dynamics in PBLG-PEG-PBLG Triblock Copolymers. , 2004, , 327-334.		1
68	Wenn selbst Öl abperlt. Physik in Unserer Zeit, 2014, 45, 228-233.	0.0	0
69	Nanorough silica coatings by chemical vapor deposition. RSC Advances, 2014, 4, 12737.	3.6	0