
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1778670/publications.pdf Version: 2024-02-01

CILI-PENC YU

#	Article	IF	CITATIONS
1	BODIPY-based conjugated porous polymers for highly efficient volatile iodine capture. Journal of Materials Chemistry A, 2017, 5, 6622-6629.	5.2	159
2	Highly Fluoro-Substituted Covalent Organic Framework and Its Application in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 42233-42240.	4.0	127
3	Versatile Adamantane-based porous polymers with enhanced microporosity for efficient CO2 capture and iodine removal. Chemical Engineering Journal, 2018, 334, 900-906.	6.6	120
4	Visible Light-Driven C-3 Functionalization of Indoles over Conjugated Microporous Polymers. ACS Catalysis, 2018, 8, 8084-8091.	5.5	113
5	Liquid acid-catalysed fabrication of nanoporous 1,3,5-triazine frameworks with efficient and selective CO2 uptake. Polymer Chemistry, 2014, 5, 3424.	1.9	112
6	Facile Preparation of Dibenzoheterocycle-Functional Nanoporous Polymeric Networks with High Gas Uptake Capacities. Macromolecules, 2014, 47, 2875-2882.	2.2	108
7	Uniform poly(phosphazene–triazine) porous microspheres for highly efficient iodine removal. Chemical Communications, 2018, 54, 8450-8453.	2.2	101
8	Carbazole-decorated covalent triazine frameworks: Novel nonmetal catalysts for carbon dioxide fixation and oxygen reduction reaction. Journal of Catalysis, 2018, 362, 1-9.	3.1	96
9	Tunable porosity of nanoporous organic polymers with hierarchical pores for enhanced CO ₂ capture. Polymer Chemistry, 2016, 7, 3416-3422.	1.9	94
10	Ferrocene-based porous organic polymers for high-affinity iodine capture. Chemical Engineering Journal, 2020, 380, 122420.	6.6	93
11	Fluorescent porous organic polymers. Polymer Chemistry, 2019, 10, 1168-1181.	1.9	92
12	Facile Carbonization of Microporous Organic Polymers into Hierarchically Porous Carbons Targeted for Effective CO ₂ Uptake at Low Pressures. ACS Applied Materials & Interfaces, 2016, 8, 18383-18392.	4.0	90
13	Carbazole-Bearing Porous Organic Polymers with a Mulberry-Like Morphology for Efficient lodine Capture. ACS Applied Materials & Interfaces, 2019, 11, 27335-27342.	4.0	90
14	1,3,5-Triazine-Based Microporous Polymers with Tunable Porosities for CO ₂ Capture and Fluorescent Sensing. Macromolecules, 2017, 50, 8512-8520.	2.2	89
15	A rational construction of microporous imide-bridged covalent–organic polytriazines for high-enthalpy small gas absorption. Journal of Materials Chemistry A, 2015, 3, 878-885.	5.2	81
16	Functionalized Covalent Triazine Frameworks for Effective CO ₂ and SO ₂ Removal. ACS Applied Materials & Interfaces, 2018, 10, 36002-36009.	4.0	75
17	Control of porosity of novel carbazole-modified polytriazine frameworks for highly selective separation of CO ₂ –N ₂ . Journal of Materials Chemistry A, 2014, 2, 7795-7801.	5.2	72
18	Sulfur-rich covalent triazine polymer nanospheres for environmental mercury removal and detection. Polymer Chemistry, 2018, 9, 4125-4131.	1.9	72

#	Article	IF	CITATIONS
19	A Luminescent Hypercrosslinked Conjugated Microporous Polymer for Efficient Removal and Detection of Mercury Ions. Macromolecular Rapid Communications, 2015, 36, 1566-1571.	2.0	71
20	Phenoxazine-based organic dyes with different chromophores for dye-sensitized solar cells. Organic Electronics, 2013, 14, 2795-2801.	1.4	66
21	Promoting and Tuning Porosity of Flexible Ether-Linked Phthalazinone-Based Covalent Triazine Frameworks Utilizing Substitution Effect for Effective CO ₂ Capture. ACS Applied Materials & Interfaces, 2017, 9, 13201-13212.	4.0	64
22	Self-healing stimuli-responsive cellulose nanocrystal hydrogels. Carbohydrate Polymers, 2020, 229, 115486.	5.1	60
23	Porous Organic Polymers: An Emerged Platform for Photocatalytic Water Splitting. Frontiers in Chemistry, 2018, 6, 592.	1.8	51
24	One-pot synthesis of an ionic porous organic framework for metal-free catalytic CO2 fixation under ambient conditions. Chemical Engineering Journal, 2018, 350, 867-871.	6.6	51
25	Phthalazinone structure-based covalent triazine frameworks and their gas adsorption and separation properties. RSC Advances, 2016, 6, 12009-12020.	1.7	49
26	Soluble and curable poly(phthalazinone ether amide)s with terminal cyano groups and their crosslinking to heat resistant resin. Polymer, 2009, 50, 1700-1708.	1.8	48
27	Synthesis, characterization, and crosslinking of soluble cyano-containing poly(arylene ether)s bearing phthalazinone moiety. Polymer, 2010, 51, 100-109.	1.8	45
28	Self-assembled polymeric micelles as amphiphilic particulate emulsifiers for controllable Pickering emulsions. Materials Chemistry Frontiers, 2019, 3, 356-364.	3.2	45
29	Design of well-defined shell–core covalent organic frameworks/metal sulfide as an efficient Z-scheme heterojunction for photocatalytic water splitting. Chemical Science, 2021, 12, 16065-16073.	3.7	43
30	Anticorrosive waterborne polyurethane coatings derived from castor oil and renewable diols. Chemical Engineering Journal, 2022, 433, 134470.	6.6	43
31	Exploration of 1D channels in stable and high-surface-area covalent triazine polymers for effective iodine removal. Chemical Engineering Journal, 2019, 371, 314-318.	6.6	42
32	Phenothiazine core promoted charge transfer in conjugated microporous polymers for photocatalytic Ugi-type reaction and aerobic selenation of indoles. Applied Catalysis B: Environmental, 2020, 272, 118982.	10.8	42
33	Metal Microporous Aromatic Polymers with Improved Performance for Small Gas Storage. Chemistry - A European Journal, 2015, 21, 13357-13363.	1.7	41
34	Novel ferrocene-based nanoporous organic polymers for clean energy application. RSC Advances, 2015, 5, 8933-8937.	1.7	40
35	Acid/hydrazide-appended covalent triazine frameworks for low-pressure CO ₂ capture: pre-designable or post-synthesis modification. Journal of Materials Chemistry A, 2017, 5, 21266-21274.	5.2	40
36	Crystallization manipulation and morphology evolution for highly efficient perovskite solar cell fabrication <i>via</i> hydration water induced intermediate phase formation under heat assisted spin-coating. Journal of Materials Chemistry A, 2018, 6, 3012-3021.	5.2	40

#	Article	IF	CITATIONS
37	A comparative study on properties of two phenoxazine-based dyes for dye-sensitized solar cells. Dyes and Pigments, 2014, 101, 67-73.	2.0	39
38	Highly thermostable rigid-rod networks constructed from an unsymmetrical bisphthalonitrile bearing phthalazinone moieties. Polymer Chemistry, 2012, 3, 1024.	1.9	38
39	Synthesis and characterization of soluble copoly(arylene ether sulfone phenyl-s-triazine)s containing phthalazinone moieties in the main chain. Polymer, 2009, 50, 4520-4528.	1.8	36
40	Synthesis and Morphology Evolution of Ultrahigh Content Nitrogenâ€Doped, Microporeâ€Dominated Carbon Materials as Highâ€Performance Supercapacitors. ChemSusChem, 2018, 11, 3932-3940.	3.6	36
41	Modulating Carrier Transfer over Carbazolic Conjugated Microporous Polymers via Donor Structural Design for Functionalization of Thiophenols. ACS Applied Materials & Interfaces, 2021, 13, 60072-60083.	4.0	36
42	Photovoltaic performance of long-chain poly(triphenylamine-phenothiazine) dyes with a tunable Ï€-bridge for dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 14217-14227.	5.2	35
43	Synthesis and characterization of partly fluorinated poly(phthalazinone ether)s crosslinked by allyl group for passive optical waveguides. Polymer, 2010, 51, 1524-1529.	1.8	32
44	Covalent-organic frameworks (COFs)-based membranes for CO2 separation. Journal of CO2 Utilization, 2020, 41, 101224.	3.3	31
45	Fabrication of conjugated microporous polytriazine nanotubes and nanospheres for highly selective CO ₂ capture. Chemical Communications, 2017, 53, 4128-4131.	2.2	28
46	Polarization-induced charge separation in conjugated microporous polymers for efficient visible light-driven C-3 selenocyanation of indoles. Chemical Science, 2021, 12, 5631-5637.	3.7	28
47	Hyper-crosslinked aromatic polymers with improved microporosity for enhanced CO ₂ /N ₂ and CO ₂ /CH ₄ selectivity. New Journal of Chemistry, 2017, 41, 6834-6839.	1.4	27
48	Phenothiazine-based conjugated microporous polymers: Pore surface and bandgap engineering for visible light-driven aerobic oxidative cyanation. Chemical Engineering Journal, 2021, 408, 127261.	6.6	27
49	Cure kinetics, phase behaviors, and fracture properties of bismaleimide resin toughened by poly(phthalazinone ether ketone). Polymer Engineering and Science, 2009, 49, 2301-2308.	1.5	24
50	Synthesis, characterization and properties of heat-resistant and soluble poly(aryl ether)s containing s-triazine units in the main chain. Polymer Degradation and Stability, 2009, 94, 1053-1060.	2.7	24
51	One-pot synthesis of nitrogen-rich aminal- and triazine-based hierarchical porous organic polymers with highly efficient iodine adsorption. Polymer, 2020, 194, 122401.	1.8	24
52	Synthesis and characterization of poly(arylene ether <i>s</i> â€ŧriazine)s containing alkyl― aryl―and chloroâ€substituted phthalazinone moieties in the main chain. Polymer International, 2010, 59, 1233-1239.	1.6	23
53	Acid doped polybenzimidazoles containing 4-phenyl phthalazinone moieties for high-temperature PEMFC. Journal of Membrane Science, 2012, 423-424, 128-135.	4.1	23
54	The role of the internal molecular free volume in defining organic porous copolymer properties: tunable porosity and highly selective CO ₂ adsorption. Physical Chemistry Chemical Physics, 2016, 18, 11323-11329.	1.3	23

#	Article	IF	CITATIONS
55	Nitrogenâ€rich porous polyaminal network as a platform for iodine adsorption through physical and chemical interaction. Journal of Applied Polymer Science, 2018, 135, 46106.	1.3	23
56	Series of D-Ï€-A system based on isoindigo dyes for DSSC: Synthesis, electrochemical and photovoltaic properties. Synthetic Metals, 2014, 187, 17-23.	2.1	21
57	Heat-resistant aromatic S-triazine-containing ring-chain polymers based on bis(ether nitrile)s: Synthesis and properties. Polymer Degradation and Stability, 2010, 95, 2445-2452.	2.7	20
58	Phthalazinone-based copolymers with intrinsic microporosity (PHPIMs) and their separation performance. Journal of Membrane Science, 2017, 541, 403-412.	4.1	20
59	Facile preparation of CoO nanoparticles embedded N-doped porous carbon from conjugated microporous polymer for oxygen reduction reaction. Journal of Colloid and Interface Science, 2020, 562, 550-557.	5.0	20
60	Novel thermally stable and organosoluble aromatic polyamides with main chain phenyl-1,3,5-triazine moieties. Polymer Degradation and Stability, 2012, 97, 1807-1814.	2.7	19
61	Flexible Ketone-bridged organic porous nanospheres: Promoting porosity utilizing intramolecular hydrogen-bonding effects for effective gas separation. Chemical Engineering Journal, 2019, 358, 1383-1389.	6.6	19
62	Fluorescent Porous Carbazoleâ€Đecorated Copolymer Monodisperse Microspheres: Facile synthesis, Selective and Recyclable Detection of Ironâ€(III) in Aqueous Medium. Chemistry - A European Journal, 2018, 24, 3030-3037.	1.7	18
63	Co(III)-Salen immobilized cellulose nanocrystals for efficient catalytic CO2 fixation into cyclic carbonates under mild conditions. Carbohydrate Polymers, 2021, 256, 117558.	5.1	18
64	Construction of triphenylamine functional phthalazinone-based covalent triazine frameworks for effective CO2 capture. Polymer, 2018, 151, 65-74.	1.8	17
65	Phthalonitrile-functional multiple arylene ether nitrile-containing phthalazinone moiety: facile synthesis, curing, and properties. High Performance Polymers, 2014, 26, 540-549.	0.8	16
66	Engineering pore surface and morphology of microporous organic polymers for improved affinity towards CO2. Chemical Engineering Journal, 2019, 373, 338-344.	6.6	16
67	Carbodiimide coupling versus click chemistry for nanoparticle surface functionalization: A comparative study for the encapsulation of sodium cholate by cellulose nanocrystals modified with β-cyclodextrin. Carbohydrate Polymers, 2020, 244, 116512.	5.1	16
68	Three birds, one stone – photo-/piezo-/chemochromism in one conjugated nanoporous ionic organic network. Journal of Materials Chemistry C, 2018, 6, 9065-9070.	2.7	15
69	A Vinyleneâ€Bridged Conjugated Covalent Triazine Polymer as a Visibleâ€Lightâ€Active Photocatalyst for Degradation of Methylene Blue. Macromolecular Rapid Communications, 2020, 41, e2000006.	2.0	15
70	Boosting radioactive iodine capture of microporous polymers through strengthened host–guest interaction. Microporous and Mesoporous Materials, 2021, 321, 111148.	2.2	15
71	Thermal degradation kinetics of poly(aryl ether sulfone 1,3,5-triazine)s containing phthalazinone moieties. Thermochimica Acta, 2011, 514, 51-57.	1.2	14
72	Benzodithiophenedioneâ€Based Conjugated Microporous Polymer Catalysts for Aerobic Oxidation Reactions Driven by Visible‣ight. ChemPhotoChem, 2019, 3, 645-651.	1.5	14

#	Article	IF	CITATIONS
73	Fluorinated covalent triazine frameworks for effective CH4 separation and iodine vapor uptake. Separation and Purification Technology, 2022, 290, 120857.	3.9	13
74	Synthesis of phenyl-s-triazine-based copoly(aryl ether)s derived from hydroquinone and resorcinol. Polymer Degradation and Stability, 2009, 94, 2065-2071.	2.7	12
75	Building metal-functionalized porous carbons from microporous organic polymers for CO ₂ capture and conversion under ambient conditions. Catalysis Science and Technology, 2019, 9, 4422-4428.	2.1	12
76	lonic Liquidsâ€Based Membranes for Carbon Dioxide Separation. Israel Journal of Chemistry, 2019, 59, 824-831.	1.0	12
77	Synthesis and characterization of conjugated polymers with main-chain donors and pendent acceptors for dye-sensitized solar cells. RSC Advances, 2013, 3, 16612.	1.7	11
78	Nanoscale porous triazine-based frameworks with cyanate ester linkages for efficient drug delivery. RSC Advances, 2016, 6, 20834-20842.	1.7	11
79	Visible-light-driven Cr(<scp>vi</scp>) reduction by ferrocene-integrated conjugated porous polymers <i>via</i> dual catalytic routes. Chemical Communications, 2021, 57, 4886-4889.	2.2	11
80	Effects of phenyl-s-triazine moieties on thermal stability and degradation behavior of aromatic polyether sulfones. Journal of Polymer Research, 2012, 19, 1.	1.2	10
81	A novel UVâ€curable epoxy acrylate resin containing arylene ether sulfone linkages: Preparation, characterization, and properties. Journal of Applied Polymer Science, 2014, 131, .	1.3	10
82	Phthalonitrile-functionalized poly(ether imide) oligomers derived from phthalazinone-containing dianhydride: facile synthesis, curing and properties. Polymer Bulletin, 2018, 75, 1037-1054.	1.7	10
83	D-Ï€-A conjugated polymer dyes-covered TiO2 compact layers for enhancing photovoltaic performance of dye-sensitized solar cells. Synthetic Metals, 2018, 244, 73-79.	2.1	9
84	Click-based transparent durable films derived from tetrabrachius PDMS-bridged epoxy acrylates and surface modified nanosilica particles. Progress in Organic Coatings, 2018, 117, 166-173.	1.9	7
85	Hierarchical porous organic hyper-cross-linked polymers containing phthalazinone and carbazole moieties for gas uptake and fluorescence properties. European Polymer Journal, 2020, 130, 109674.	2.6	7
86	Enhanced iodine capture by incorporating anionic phosphate unit into porous networks. Separation and Purification Technology, 2021, 279, 119799.	3.9	7
87	Ferrocene-integrated conjugated microporous polymer nanosheets: Active and regenerative catalysts for photomediated controlled radical polymerization. Applied Materials Today, 2020, 18, 100507.	2.3	6
88	Use thiophene as a comonomer alternative to triphenylamine combine with 4, 8-dithienylbenzo [1,2-b: 4, 5-b'] dithiophene as a polymer dye in sensitized solar cells. Synthetic Metals, 2015, 209, 119-127.	2.1	5
89	BODIPYâ€based Carbonaceous Materials for High Performance Electrical Capacitive Energy Storage. Chemistry - an Asian Journal, 2018, 13, 3051-3056.	1.7	5
90	Building carbazole-decorated styrene–acrylic copolymer latexes and films for iron(III) ion detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127487.	2.3	5

#	Article	IF	CITATIONS
91	Structure and Properties of PVDF/PA6 Blends Compatibilized by Ionic Liquid-Grafted PA6. ACS Omega, 2022, 7, 12772-12778.	1.6	5
92	Selective Recognition of Fe(III) in Aqueous Environment over Covalentlyâ€Bonded Tbâ€Complexâ€Containing Fluorescent Porous Copolymer Microspheres. Macromolecular Chemistry and Physics, 2018, 219, 1800403.	1.1	4
93	An Azo-bridged porous organic polymers modified poly(phthalazinone ether sulfone ketone) membrane for efficient O2/N2 separation. Separation and Purification Technology, 2020, 248, 117044.	3.9	4
94	A Knitting Copolymerization Strategy to Build Porous Polytriazolium Salts for Removal of Anionic Dyes and MnO ₄ ^{â^'} . Macromolecular Rapid Communications, 2022, 43, e2200170.	2.0	4
95	Tunable molecular weights of poly(triphenylamineâ€2,2′â€bithiophene) and their effects on photovoltaic performance as sensitizers for dyeâ€sensitized solar cells. Journal of Applied Polymer Science, 2016, 133, .	1.3	3
96	One-pot construction of nitrogen-rich polymeric ionic porous networks for effective CO ₂ capture and fixation. Polymer Chemistry, 2021, 13, 121-129.	1.9	3
97	Effective Suzuki coupling reaction enabled by palladium–polycarbene catalyst derived from porous polyimidazolium. Journal of Porous Materials, 2022, 29, 601-608.	1.3	3
98	Boosting SO ₂ Capture within Nitrogen-Doped Microporous Biocarbon Nanosheets. Industrial & Engineering Chemistry Research, 2022, 61, 9785-9794.	1.8	2
99	Conductance investigation of p-MIECs fabricated by poly(3,4-ethylenedioxy thiophene), polyacrylic acid, polyethylene oxide, and lithium-ion salt. Polymer Composites, 2015, 36, 2076-2083.	2.3	1
100	Highly Disordered Crystalline-Phase Transition of Tetrakis(1-adamantanecarboxymethyl)methane. Bulletin of the Chemical Society of Japan, 2012, 85, 481-486.	2.0	0
101	SYNTHESIS OF A 1,3,5-TRIAZINE-CONTAINING AROMATIC DIACID MONOMER AND ITS SOLUBLE AROMATIC POLYAMIDES. Acta Polymerica Sinica, 2012, 012, 870-875.	0.0	Ο