Corrado Mencar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1778653/publications.pdf

Version: 2024-02-01

79 papers 1,068 citations

16 h-index 29 g-index

84 all docs 84 docs citations

84 times ranked 784 citing authors

#	Article	IF	CITATIONS
1	Human Detection inÂDrone Images Using YOLO forÂSearch-and-Rescue Operations. Lecture Notes in Computer Science, 2022, , 326-337.	1.0	4
2	Design and Validation of an Explainable Fuzzy Beer Style Classifier. Studies in Computational Intelligence, 2021, , 169-217.	0.7	3
3	Designing Interpretable Fuzzy Systems. Studies in Computational Intelligence, 2021, , 119-168.	0.7	6
4	Revisiting Indexes for Assessing Interpretability of Fuzzy Systems. Studies in Computational Intelligence, 2021, , 91-118.	0.7	7
5	Toward Explainable Artificial Intelligence Through Fuzzy Systems. Studies in Computational Intelligence, 2021, , 1-23.	0.7	7
6	Interpretability Constraints and Criteria for Fuzzy Systems. Studies in Computational Intelligence, 2021, , 49-89.	0.7	10
7	Application of machine learning to predict obstructive sleep apnea syndrome severity. Health Informatics Journal, 2020, 26, 298-317.	1.1	51
8	Granular counting of uncertain data. Fuzzy Sets and Systems, 2020, 387, 108-126.	1.6	8
9	Crowd Counting from Unmanned Aerial Vehicles with Fully-Convolutional Neural Networks., 2020,,.		4
10	Crowd Detection in Aerial Images Using Spatial Graphs and Fully-Convolutional Neural Networks. IEEE Access, 2020, 8, 64534-64544.	2.6	34
11	Crowd Detection for Drone Safe Landing Through Fully-Convolutional Neural Networks. Lecture Notes in Computer Science, 2020, , 301-312.	1.0	19
12	Multi-view Convolutional Network for Crowd Counting in Drone-Captured Images. Lecture Notes in Computer Science, 2020, , 588-603.	1.0	9
13	Fine-Tuning the Fuzziness of Strong Fuzzy Partitions through PSO. International Journal of Computational Intelligence Systems, 2020, 13, 1415.	1.6	1
14	Preliminary Evaluation of TinyYOLO on a New Dataset for Search-and-Rescue with Drones., 2020,,.		6
15	Incremental and Adaptive Fuzzy Clustering for Virtual Learning Environments Data Analysis. , 2019, , .		6
16	Paving the Way to Explainable Artificial Intelligence with Fuzzy Modeling. Lecture Notes in Computer Science, 2019, , 215-227.	1.0	15
17	GrCount: Counting method for uncertain data. MethodsX, 2019, 6, 2455-2459.	0.7	2
18	Data Stream Classification by Dynamic Incremental Semi-Supervised Fuzzy Clustering. International Journal on Artificial Intelligence Tools, 2019, 28, 1960009.	0.7	33

#	Article	IF	CITATIONS
19	Interpretable fuzzy partitioning of classified data with variable granularity. Applied Soft Computing Journal, 2019, 74, 567-582.	4.1	13
20	Looking at the Branches and Roots. Lecture Notes in Computer Science, 2019, , 249-252.	1.0	1
21	Enhancing the DISSFCM Algorithm for Data Stream Classification. Lecture Notes in Computer Science, 2019, , 109-122.	1.0	3
22	A Granular Computing Method for OWL Ontologies*. Fundamenta Informaticae, 2018, 159, 147-174.	0.3	3
23	Incremental adaptive semi-supervised fuzzy clustering for data stream classification. , 2018, , .		14
24	A framework for intelligent Twitter data analysis with non-negative matrix factorization. International Journal of Web Information Systems, 2018, 14, 334-356.	1.3	21
25	A Bibliometric Analysis of the Explainable Artificial Intelligence Research Field. Communications in Computer and Information Science, 2018, , 3-15.	0.4	38
26	A System for Fuzzy Granulation of OWL Ontologies. Lecture Notes in Computer Science, 2017, , 126-135.	1.0	2
27	Efficiency improvement of DCâ^— through a Genetic Guidance. , 2017, , .		2
28	KEEL meets KNIME., 2017,,.		1
29	Intelligent Twitter Data Analysis Based on Nonnegative Matrix Factorizations. Lecture Notes in Computer Science, 2017, , 188-202.	1.0	7
30	Q-matrix Extraction from Real Response Data Using Nonnegative Matrix Factorizations. Lecture Notes in Computer Science, 2017, , 203-216.	1.0	8
31	A fuzzy method for RNA-Seq differential expression analysis in presence of multireads. BMC Bioinformatics, 2016, 17, 345.	1.2	25
32	Managing NGS Differential Expression Uncertainty with Fuzzy Sets. Lecture Notes in Computer Science, 2016, , 42-53.	1.0	2
33	Interpretability of Fuzzy Systems: Current Research Trends and Prospects., 2015,, 219-237.		71
34	Subtractive clustering for seeding non-negative matrix factorizations. Information Sciences, 2014, 257, 369-387.	4.0	46
35	Part-Based Data Analysis with Masked Non-negative Matrix Factorization. Lecture Notes in Computer Science, 2014, , 440-454.	1.0	2
36	Automatic Design of Interpretable Fuzzy Partitions with Variable Granularity: An Experimental Comparison. Lecture Notes in Computer Science, 2013, , 318-328.	1.0	2

#	Article	IF	Citations
37	Fast Fuzzy Inference in Octave. International Journal of Computational Intelligence Systems, 2013, 6, 307-317.	1.6	О
38	Design of Strong Fuzzy Partitions from Cuts. , 2013, , .		10
39	Interpretability of Fuzzy Systems. Lecture Notes in Computer Science, 2013, , 22-35.	1.0	9
40	Modeling Interpretable Fuzzy Rule-Based Classifiers for Medical Decision Support. Advances in Medical Technologies and Clinical Practice Book Series, 2012, , 255-272.	0.3	5
41	Design of fuzzy rule-based classifiers with semantic cointension. Information Sciences, 2011, 181, 4361-4377.	4.0	30
42	Interpretability assessment of fuzzy knowledge bases: A cointension based approach. International Journal of Approximate Reasoning, 2011, 52, 501-518.	1.9	79
43	Assessment of semantic cointension of fuzzy rule-based classifiers in a medical context., 2011,,.		3
44	Fuzzy Information Granulation with Multiple Levels of Granularity. Intelligent Systems Reference Library, 2011, , 185-202.	1.0	1
45	Subtractive Initialization of Nonnegative Matrix Factorizations for Document Clustering. Lecture Notes in Computer Science, 2011, , 188-195.	1.0	1
46	Serendipitous Fuzzy Item Recommendation with ProfileMatcher. Lecture Notes in Computer Science, 2011, , 220-227.	1.0	0
47	LEARNING FUZZY USER PROFILES FOR RESOURCE RECOMMENDATION. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2010, 18, 389-410.	0.9	7
48	Data-driven design of fuzzy classification rules with semantic cointension. , 2010, , .		3
49	Interpretability of Fuzzy Information Granules. Studies in Computational Intelligence, 2009, , 95-118.	0.7	1
50	Modeling User Preferences through Adaptive Fuzzy Profiles. , 2009, , .		9
51	A Study on Interpretability Conditions for Fuzzy Rule-Based Classifiers. , 2009, , .		3
52	Item Recommendation with Veristic and Possibilistic Metadata: A Preliminary Approach., 2009,,.		1
53	Interpretability Assessment of Fuzzy Rule-Based Classifiers. Lecture Notes in Computer Science, 2009, , 155-162.	1.0	5
54	A System for Fuzzy Items Recommendation. Studies in Computational Intelligence, 2009, , 119-140.	0.7	0

#	Article	IF	Citations
55	Interpretability constraints for fuzzy information granulation. Information Sciences, 2008, 178, 4585-4618.	4.0	145
56	A Neural Network for Water Level Prediction in Artesian Wells. , 2008, , .		1
57	Fuzzy User Profiling in e-Learning Contexts. Lecture Notes in Computer Science, 2008, , 230-237.	1.0	7
58	A Profile Modelling Approach for E-Learning Systems. Lecture Notes in Computer Science, 2008, , 275-290.	1.0	2
59	ON THE ROLE OF INTERPRETABILITY IN FUZZY DATA MINING. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2007, 15, 521-537.	0.9	26
60	Similarity-Based Fuzzy Clustering for User Profiling. , 2007, , .		10
61	Interpretable Granulation of Medical Data with DC., 2007,,.		О
62	Similarity-Based Fuzzy Clustering for User Profiling. , 2007, , .		2
63	DC ^γ : Interpretable Granulation of Data through GA-based Double Clustering., 2007,,.		2
64	Distinguishability quantification of fuzzy sets. Information Sciences, 2007, 177, 130-149.	4.0	43
65	Improving the Classification Ability of DC* Algorithm. Lecture Notes in Computer Science, 2007, , 145-151.	1.0	2
66	Interface optimality in fuzzy inference systems. International Journal of Approximate Reasoning, 2006, 41, 128-145.	1.9	3
67	Balancing Interpretability and Accuracy by Multi-Level Fuzzy Information Granulation., 2006,,.		7
68	Bi-monotonic Fuzzy Sets Lead to Optimal Fuzzy Interfaces. Lecture Notes in Computer Science, 2006, , 39-45.	1.0	0
69	Deriving prediction intervals for neuro-fuzzy networks. Mathematical and Computer Modelling, 2005, 42, 719-726.	2.0	15
70	Knowledge discovery by a neuro-fuzzy modeling framework. Fuzzy Sets and Systems, 2005, 149, 187-207.	1.6	47
71	DCf: a double clustering framework for fuzzy information granulation., 2005,,.		14
72	An Empirical Risk Functional to Improve Learning in a Neuro-Fuzzy Classifier. IEEE Transactions on Systems, Man, and Cybernetics, 2004, 34, 725-731.	5 . 5	29

#	Article	IF	CITATIONS
73	A neuro-fuzzy network to generate human-understandable knowledge from data. Cognitive Systems Research, 2002, 3, 125-144.	1.9	43
74	Extracting Interpretable Fuzzy Knowledge from Data. , 2002, , 109-116.		0
75	HUGE: an integrated system for Human Understandable Granule Extraction. , 0, , .		O
76	Mining Diagnostic Rules Using Fuzzy Clustering. , 0, , 211-228.		3
77	Interpretable knowledge discovery from data with DC*. , 0, , .		3
78	Exploiting Particle Swarm Optimization to Attune Strong Fuzzy Partitions Based on Cuts., 0,,.		1
79	Effect of fuzziness in fuzzy rule-based classifiers defined by strong fuzzy partitions and winner-takes-all inference. Soft Computing, 0 , , 1 .	2.1	2