Jian Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1778182/publications.pdf

Version: 2024-02-01

		50276	64796
139	7,013	46	79
papers	citations	h-index	g-index
120	120	120	6521
139	139	139	6531
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Defect passivation and interface modification by tetra-n-octadecyl ammonium bromide for efficient and stable inverted perovskite solar cells. Chemical Engineering Journal, 2022, 429, 132426.	12.7	24
2	Over 17.7% efficiency ternary-blend organic solar cells with low energy-loss and good thickness-tolerance. Chemical Engineering Journal, 2022, 428, 129276.	12.7	110
3	High density anchoring of NiMoS4 on ultrathin Ti3C2 MXene assisted by dopamine for supercapacitor electrode materials. Journal of Alloys and Compounds, 2022, 891, 161945.	5.5	40
4	16.5% Polymer Solar Cells with 6â€Aminocaproic Acidâ€Modified ZnO as a Cathodic Interface Layer. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, 2100708.	1.8	2
5	Smart Ternary Strategy in Promoting the Performance of Polymer Solar Cells Based on Bulkâ∈Heterojunction or Layerâ∈Byâ∈Layer Structure. Small, 2022, 18, e2104215.	10.0	100
6	Electrical properties of carbon-based fully-printed mesoscopic perovskite solar cells with BAI as an additive. Journal of Materials Science: Materials in Electronics, 2022, 33, 3091-3100.	2.2	0
7	A biopolymer-gated ionotronic junctionless oxide transistor array for spatiotemporal pain-perception emulation in nociceptor network. Nanoscale, 2022, 14, 2316-2326.	5.6	52
8	Crystallization Kinetics Control Enabled by a Green Ionic Liquid Additive toward Efficient and Stable Carbon-Based Mesoscopic Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2022, 14, 9161-9171.	8.0	19
9	Artificial Vision Adaption Mimicked by an Optoelectrical In ₂ O ₃ Transistor Array. Nano Letters, 2022, 22, 3372-3379.	9.1	56
10	Flexible Perovskite Solar Cells: From Materials and Device Architectures to Applications. ACS Energy Letters, 2022, 7, 1412-1445.	17.4	54
11	Perovskite Films Treated with Polyvinyl Pyrrolidone for High-Performance Inverted Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 4448-4460.	5.1	12
12	Room temperature boronized and phosphated cobalt-nickel metal-organic framework as the electrode material for supercapacitors. Journal of Energy Storage, 2022, 51, 104372.	8.1	18
13	Facile preparation of Ni(OH)2-B/S composite with an embroidered spherical nanosheet structure for high-performance supercapacitors. Journal of Energy Storage, 2022, 50, 104616.	8.1	9
14	Polymerized Naphthalimide Derivatives as Remarkable Electronâ€Transport Layers for Inverted Organic Solar Cells. Macromolecular Rapid Communications, 2022, 43, e2200119.	3.9	5
15	Efficient printable carbon-based mesoscopic perovskite solar cells based on aluminum and indium doped TiO2 compact layer. Materials Letters, 2022, 322, 132427.	2.6	2
16	Broadband photomultiplication-type polymer photodetectors and its application in light-controlled circuit. Science China Chemistry, 2022, 65, 1642-1649.	8.2	50
17	Ultrathin graphene@NiCo2S4@Ni-Mo layered double hydroxide with a 3D hierarchical flowers structure as a high performance positive electrode for hybrid supercapacitor. Journal of Energy Storage, 2022, 52, 105049.	8.1	22
18	Organic photovoltaics with 300 nm thick ternary active layers exhibiting 15.6% efficiency. Journal of Materials Chemistry C, 2021, 9, 9892-9898.	5 . 5	43

#	Article	IF	CITATIONS
19	Highly sensitive all-polymer photodetectors with ultraviolet-visible to near-infrared photo-detection and their application as an optical switch. Journal of Materials Chemistry C, 2021, 9, 5349-5355.	5.5	45
20	Revealing the microstructure evolution of inorganic CsPbI 2 Br perovskite via synchrotron radiation grazing incidence Xâ€ray diffraction. Nano Select, 2021, 2, 932-938.	3.7	5
21	Ternary Organic Photovoltaic Cells Exhibiting 17.59% Efficiency with Two Compatible Y6 Derivations as Acceptor. Solar Rrl, 2021, 5, 2100007.	5.8	81
22	A solution-processed, ultraviolet-irradiation-derived WO3 film as anode interface layer for high-performance non-fullerene organic solar cells. Solar Energy, 2021, 216, 211-216.	6.1	12
23	Smart Strategy: Transparent Hole-Transporting Polymer as a Regulator to Optimize Photomultiplication-type Polymer Photodetectors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 21565-21572.	8.0	55
24	Holeâ€Storage Enhanced aâ€Si Photocathodes for Efficient Hydrogen Production. Angewandte Chemie, 2021, 133, 12073-12079.	2.0	2
25	Holeâ€Storage Enhanced aâ€Si Photocathodes for Efficient Hydrogen Production. Angewandte Chemie - International Edition, 2021, 60, 11966-11972.	13.8	29
26	Three-Dimensional Self-Supporting Ti ₃ C ₂ with MoS ₂ and Cu ₂ O Nanocrystals for High-Performance Flexible Supercapacitors. ACS Applied Materials & amp; Interfaces, 2021, 13, 22664-22675.	8.0	107
27	Effective carrier transport tuning of CuOx quantum dots hole interfacial layer for high-performance inverted perovskite solar cell. Applied Surface Science, 2021, 547, 149117.	6.1	19
28	Poly(3,4â€ethylenedioxythiophene)â€poly(styrenesulfonate) Modified by Water for Efficient Inverted Perovskite Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100066.	1.8	1
29	Over 16% Efficiency of Thickâ€Film Organic Photovoltaics with Symmetric and Asymmetric Nonâ€Fullerene Materials as Alloyed Acceptor. Solar Rrl, 2021, 5, 2100365.	5.8	13
30	Multifunctional passivation strategy based on tetraoctylammonium bromide for efficient inverted perovskite solar cells. Nano Energy, 2021, 84, 105882.	16.0	46
31	Roomâ€Temperatureâ€Processed, Carbonâ€Based Fully Printed Mesoscopic Perovskite Solar Cells with 15% Efficiency. Solar Rrl, 2021, 5, 2100274.	5.8	11
32	Highly sensitive, sub-microsecond polymer photodetectors for blood oxygen saturation testing. Science China Chemistry, 2021, 64, 1302-1309.	8.2	69
33	Synergistic Effect of Defect Passivation and Crystallization Control Enabled by Bifunctional Additives for Carbon-Based Mesoscopic Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 45435-45445.	8.0	12
34	Two Y6 Derivations with Similar Chemical Structure As One Alloyed Acceptor Enable Efficient Ternary-Blend Polymer Solar Cells. ACS Applied Energy Materials, 2021, 4, 11761-11768.	5.1	8
35	Defect-mediated Z-scheme carriers' dynamics of C-ZnO/A-CN toward highly enhanced photocatalytic TC degradation. Journal of Alloys and Compounds, 2021, 877, 160321.	5.5	29
36	Layer-by-layer self-assembled GO-MoS2Co3O4 three-dimensional conducting network for high-performance supercapacitors. Journal of Energy Storage, 2021, 43, 103195.	8.1	19

#	Article	IF	Citations
37	Template strategy to synthesize porous Mn-Co-S nanospheres electrode for high-performance supercapacitors. Journal of Energy Storage, 2021, 44, 103267.	8.1	22
38	Over 17% Efficiency of Ternary Organic Photovoltaics Employing Two Acceptors with an Acceptor–Donor–Acceptor Configuration. ACS Applied Materials & Diterfaces, 2021, 13, 57684-57692.	8.0	47
39	16.5% efficiency ternary organic photovoltaics with two polymer donors by optimizing molecular arrangement and phase separation. Nano Energy, 2020, 69, 104447.	16.0	80
40	Non-conjugated polymers as thickness-insensitive electron transport materials in high-performance inverted organic solar cells. Journal of Energy Chemistry, 2020, 47, 196-202.	12.9	32
41	Improved Pore-Filling and Passivation of Defects in Hole-Conductor-Free, Fully Printable Mesoscopic Perovskite Solar Cells Based on <scp>d</scp> -Sorbitol Hexaacetate-Modified MAPbl ₃ . ACS Applied Materials & Defense amp; Interfaces, 2020, 12, 47677-47683.	8.0	7
42	A critical review on semitransparent organic solar cells. Nano Energy, 2020, 78, 105376.	16.0	247
43	A Critical Review on Efficient Thickâ€Film Organic Solar Cells. Solar Rrl, 2020, 4, 2000364.	5.8	80
44	Enhanced photovoltaic performance and reduced hysteresis in hole-conductor-free, printable mesoscopic perovskite solar cells based on melamine hydroiodide modified MAPbI3. Solar Energy, 2020, 206, 548-554.	6.1	8
45	Synergetic defects boost charge separation in CN for enhanced photocatalytic water splitting. Journal of Materials Chemistry C, 2020, 8, 9366-9372.	5.5	15
46	A Facile Airâ€Retreatment Strategy for Efficient Inverted Perovskite Solar Cells. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000069.	2.4	4
47	High-performance inverted perovskite solar cells using 4-diaminomethylbenzoic as a passivant. Nanoscale, 2020, 12, 6767-6775.	5. 6	26
48	An Ultravioletâ€Deposited MoO 3 Film as Anode Interlayer for Highâ€Performance Polymer Solar Cells. Advanced Materials Interfaces, 2020, 7, 1901912.	3.7	14
49	Enabling Unassisted Solar Water Splitting by Single-Junction Amorphous Silicon Photoelectrodes. ACS Applied Energy Materials, 2020, 3, 4629-4637.	5.1	11
50	Facile precursor stoichiometry engineering for efficient inverted perovskite solar cells without any dopants. Organic Electronics, 2019, 75, 105396.	2.6	12
51	The efficient and non-hysteresis inverted non-fullerenes/CH3NH3PbI3 planar solar cells. Solar Energy, 2019, 189, 307-313.	6.1	16
52	Two Wellâ€Compatible Acceptors with Efficient Energy Transfer Enable Ternary Organic Photovoltaics Exhibiting a 13.36% Efficiency. Small, 2019, 15, e1902602.	10.0	14
53	All-polymer photodetectors with photomultiplication. Journal of Materials Chemistry C, 2019, 7, 9633-9640.	5.5	11
54	Selfâ€Assembled Monomolecular Layer Modified ZnO for Efficient Inverted Polymer Solar Cells with 11.53% Efficiency. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900372.	2.4	6

#	Article	IF	Citations
55	A reduced graphene oxide–borate compound-loaded melamine sponge/silicone rubber composite with ultra-high dielectric constant. RSC Advances, 2019, 9, 14276-14285.	3.6	4
56	Achieving efficient inverted planar perovskite solar cells with nondoped PTAA as a hole transport layer. Organic Electronics, 2019, 71, 106-112.	2.6	84
57	Synthesis of amphiphilic triblock fullerene derivatives and their solvent induced self assembly in organic solar cells. Organic Electronics, 2019, 71, 36-44.	2.6	7
58	Synthesis and Application of Functionalized Diblock Amphiphilic Fullerene Derivatives. Macromolecular Chemistry and Physics, 2019, 220, 1800477.	2.2	4
59	Enhancing the Performance of Inverted Perovskite Solar Cells via Grain Boundary Passivation with Carbon Quantum Dots. ACS Applied Materials & Samp; Interfaces, 2019, 11, 3044-3052.	8.0	147
60	Lithiumâ€Ionâ€Based Conjugated Polyelectrolyte as an Interface Material for Efficient and Stable Nonâ€Fullerene Organic Solar Cells. ChemSusChem, 2019, 12, 1401-1409.	6.8	15
61	Efficient ternary non-fullerene polymer solar cells with PCE of 11.92% and FF of 76.5%. Energy and Environmental Science, 2018, 11, 841-849.	30.8	210
62	Efficient Ternary Polymer Solar Cells with Two Wellâ€Compatible Donors and One Ultranarrow Bandgap Nonfullerene Acceptor. Advanced Energy Materials, 2018, 8, 1702854.	19.5	195
63	Ternary Nonfullerene Polymer Solar Cells with a Power Conversion Efficiency of 11.6% by Inheriting the Advantages of Binary Cells. ACS Energy Letters, 2018, 3, 555-561.	17.4	161
64	High-efficiency and air stable fullerene-free ternary organic solar cells. Nano Energy, 2018, 45, 177-183.	16.0	193
65	Benefits of fullerene/SnO 2 bilayers as electron transport layer for efficient planar perovskite solar cells. Organic Electronics, 2018, 58, 294-300.	2.6	26
66	Printed hole-conductor-free mesoscopic perovskite solar cells with excellent long-term stability using PEAI as an additive. Journal of Energy Chemistry, 2018, 27, 764-768.	12.9	23
67	Vapor-fumigation for record efficiency two-dimensional perovskite solar cells with superior stability. Energy and Environmental Science, 2018, 11, 3349-3357.	30.8	87
68	Efficient Ternary Organic Solar Cells with Two Compatible Nonâ€Fullerene Materials as One Alloyed Acceptor. Small, 2018, 14, e1802983.	10.0	55
69	Ternary non-fullerene polymer solar cells with an efficiency of 11.6% by simultaneously optimizing photon harvesting and phase separation. Journal of Materials Chemistry A, 2018, 6, 11751-11758.	10.3	30
70	Efficient Inverted Polymer Solar Cells with ITO Cathode Modified by Zinc Oxide and Polyethylene Oxide Bilayers. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800113.	1.8	2
71	Polymer with a 3D conductive network: a thickness-insensitive electron transport layer for inverted polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 12969-12973.	10.3	25
72	Nematic liquid crystal materials as a morphology regulator for ternary small molecule solar cells with power conversion efficiency exceeding 10%. Journal of Materials Chemistry A, 2017, 5, 3589-3598.	10.3	173

#	Article	IF	Citations
73	Donor–Acceptor Interface Stabilizer Based on Fullerene Derivatives toward Efficient and Thermal Stable Organic Photovoltaics. ACS Applied Materials & Stable Organic Photovoltaics.	8.0	20
74	Niobium-Doped (001)-Dominated Anatase TiO ₂ Nanosheets as Photoelectrode for Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 9576-9583.	8.0	36
75	Simultaneously Enhanced Efficiency and Stability of Polymer Solar Cells by Employing Solvent Additive and Upside-down Drying Method. ACS Applied Materials & Employing Solvent National Science (1988) 1.	8.0	32
76	A liquid crystal material as the third component for ternary polymer solar cells with an efficiency of 10.83% and enhanced stability. Journal of Materials Chemistry A, 2017, 5, 13145-13153.	10.3	65
77	Polymer with conjugated alkylthiophenylthienyl side chains for efficient photovoltaic cells. Organic Electronics, 2017, 48, 298-307.	2.6	5
78	A trilobal non-fullerene electron acceptor based on benzo [1,2- b:3,4- b $\hat{a}\in 2:5,6$ - b $\hat{a}\in 3$] trithiophene and perylenediimide for polymer solar cells. Synthetic Metals, 2017, 227, 122-130.	3.9	12
79	Degradation behavior of planar heterojunction CH 3 NH 3 PbI 3 perovskite solar cells. Synthetic Metals, 2017, 227, 43-51.	3.9	31
80	Rational design of a difluorobenzo[c]cinnoline-based low-bandgap copolymer for high-performance polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 7300-7304.	10.3	12
81	Dramatically Boosted Efficiency of Small Molecule Solar Cells by Synergistically Optimizing Molecular Aggregation and Crystallinity. ACS Sustainable Chemistry and Engineering, 2017, 5, 1982-1989.	6.7	10
82	Efficient and stable inverted polymer solar cells prepared via air exposure. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600580.	1.8	0
83	Ternary small molecule solar cells exhibiting power conversion efficiency of 10.3%. Nano Energy, 2017, 39, 571-581.	16.0	83
84	Superior stability for perovskite solar cells with 20% efficiency using vacuum co-evaporation. Nanoscale, 2017, 9, 12316-12323.	5.6	169
85	Highly efficient polymer solar cells by step-by-step optimizing donor molecular packing and acceptor redistribution. Physical Chemistry Chemical Physics, 2017, 19, 709-716.	2.8	8
86	A wide temperature tolerance, solution-processed MoOx interface layer for efficient and stable organic solar cells. Solar Energy Materials and Solar Cells, 2017, 159, 136-142.	6.2	31
87	Efficient organic ternary solar cells with the third component as energy acceptor. Nano Energy, 2016, 26, 180-191.	16.0	88
88	Ultrathin two-dimensional graphitic carbon nitride as a solution-processed cathode interfacial layer for inverted polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 8000-8004.	10.3	68
89	Highly Sensitive Organic Photodetectors with Tunable Spectral Response under Biâ€Directional Bias. Advanced Optical Materials, 2016, 4, 1711-1717.	7.3	75
90	Efficient ternary organic photovoltaic cells with better trade-off photon harvesting and phase separation by doping DIB-SQ. Journal of Materials Chemistry C, 2016, 4, 7809-7816.	5.5	12

#	Article	IF	Citations
91	High-performance alloy model-based ternary small molecule solar cells. Nano Energy, 2016, 30, 276-282.	16.0	60
92	Controllable thin-film morphology and structure for 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8BTBT) based organic field-effect transistors. Organic Electronics, 2016, 36, 73-81.	2.6	55
93	Efficient and stable polymer solar cells with electrochemical deposition of CuSCN as an anode interlayer. RSC Advances, 2016, 6, 56845-56850.	3.6	8
94	Highly efficient ternary polymer solar cells by optimizing photon harvesting and charge carrier transport. Nano Energy, 2016, 22, 241-254.	16.0	196
95	Adjusting acceptor redistribution for highly efficient solvent additive-free polymer solar cells. Journal of Materials Chemistry C, 2016, 4, 3202-3208.	5 . 5	8
96	Interface degradation of perovskite solar cells and its modification using an annealing-free TiO2 NPs layer. Organic Electronics, 2016, 30, 30-35.	2.6	100
97	Versatile ternary organic solar cells: a critical review. Energy and Environmental Science, 2016, 9, 281-322.	30.8	585
98	Optimization of charge carrier transport balance for performance improvement of PDPP3T-based polymer solar cells prepared using a hot solution. Physical Chemistry Chemical Physics, 2015, 17, 9835-9840.	2.8	23
99	High efficient ternary polymer solar cells based on absorption complementary materials as electron donor. Solar Energy Materials and Solar Cells, 2015, 141, 154-161.	6.2	33
100	Efficiency improved for inverted polymer solar cells with electrostatically self-assembled BenMelm-Cl ionic liquid layer as cathode interface layer. Nano Energy, 2015, 13, 275-282.	16.0	74
101	Revealing the effect of donor/acceptor intermolecular arrangement on organic solar cells performance based on two-dimensional conjugated small molecule as electron donor. Organic Electronics, 2015, 24, 30-36.	2.6	16
102	Simultaneous Improvement in Short Circuit Current, Open Circuit Voltage, and Fill Factor of Polymer Solar Cells through Ternary Strategy. ACS Applied Materials & Samp; Interfaces, 2015, 7, 3691-3698.	8.0	114
103	Novel solution-processible small molecules based on benzo $[1,2-b:3,4-b\hat{a}\in^2:5,6-b\hat{a}\in^2\hat{a}\in^2]$ trithiophene for effective organic photovoltaics with high open-circuit voltage. RSC Advances, 2015, 5, 14540-14546.	3.6	11
104	Synthesis, characterization, and photovoltaic performance of the polymers based on thiophene-2,5-bis((2-ethylhexyl)oxy) benzene-thiophene. Organic Electronics, 2015, 20, 142-149.	2.6	22
105	Efficient inverted polymer solar cells based on conjugated polyelectrolyte and zinc oxide modified ITO electrode. Applied Physics Letters, 2015, 106, 083302.	3.3	12
106	Efficient small molecular ternary solar cells by synergistically optimized photon harvesting and phase separation. Journal of Materials Chemistry A, 2015, 3, 16653-16662.	10.3	72
107	An efficient polymer solar cell using graphene oxide interface assembled via layer-by-layer deposition. Organic Electronics, 2015, 23, 110-115.	2.6	37
108	Synthesis and photovoltaic properties of the acceptor pended push–pull conjugated polymers incorporating thieno[3,2–b] thiophene in the backbone chain or side chains. Dyes and Pigments, 2015, 120, 44-51.	3.7	14

#	Article	IF	CITATIONS
109	Achieving EQE of 16,700% in P3HT:PC71BM based photodetectors by trap-assisted photomultiplication. Scientific Reports, 2015, 5, 9181.	3.3	165
110	Unique insight into phase separation in polymer solar cells from their electric characteristics. Physical Chemistry Chemical Physics, 2015, 17, 29671-29678.	2.8	9
111	Two-dimensional quinoxaline based low bandgap conjugated polymers for bulk-heterojunction solar cells. Polymer Chemistry, 2015, 6, 7436-7446.	3.9	9
112	The underlying reason of DIO additive on the improvement polymer solar cells performance. Applied Surface Science, 2014, 305, 221-226.	6.1	44
113	Workâ€Functionâ€Tunable Chlorinated Graphene Oxide as an Anode Interface Layer in Highâ€Efficiency Polymer Solar Cells. Advanced Energy Materials, 2014, 4, 1400591.	19.5	85
114	Bandgap Tunable Zn _{1â€<i>x</i>} Mg _{<i>x</i>} O Thin Films as Highly Transparent Cathode Buffer Layers for Highâ€Performance Inverted Polymer Solar Cells. Advanced Energy Materials, 2014, 4, 1301404.	19.5	93
115	Design and synthesis of triazoloquinoxaline polymers with positioning alkyl or alkoxyl chains for organic photovoltaics cells. Polymer Chemistry, 2014, 5, 1163-1172.	3.9	21
116	A non-fullerene acceptor with all "A―units realizing high open-circuit voltage solution-processed organic photovoltaics. Journal of Materials Chemistry A, 2014, 2, 2657.	10.3	21
117	Enhanced performance of polymer solar cells by employing a ternary cascade energy structure. Physical Chemistry Chemical Physics, 2014, 16, 16103-16109.	2.8	24
118	Improved Efficiency of Bulk Heterojunction Polymer Solar Cells by Doping Low-Bandgap Small Molecules. ACS Applied Materials & Samp; Interfaces, 2014, 6, 6537-6544.	8.0	91
119	Enhanced performance of polymer solar cells by dipole-assisted hole extraction. Solar Energy Materials and Solar Cells, 2014, 130, 15-19.	6.2	16
120	Control of Nanomorphology in All-Polymer Solar Cells via Assembling Nanoaggregation in a Mixed Solution. ACS Applied Materials & Solution.	8.0	25
121	High efficiency inverted polymer solar cells with room-temperature titanium oxide/polyethylenimine films as electron transport layers. Journal of Materials Chemistry A, 2014, 2, 17281-17285.	10.3	66
122	High efficiency organic/a-Si hybrid tandem solar cells with complementary light absorption. Journal of Materials Chemistry A, 2014, 2, 15303.	10.3	18
123	Conventional polymer solar cells with power conversion efficiencies increased to >9% by a combination of methanol treatment and an anionic conjugated polyelectrolyte interface layer. RSC Advances, 2014, 4, 50988-50992.	3.6	14
124	Synthesis and photovoltaic characterization of thiadiazole based low bandgap polymers. Thin Solid Films, 2014, 562, 75-83.	1.8	15
125	Key issues and recent progress of high efficient organic light-emitting diodes. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013, 17, 69-104.	11.6	83
126	Enhanced performance of polymer solar cells through sensitization by a narrow band gap polymer. Solar Energy Materials and Solar Cells, 2013, 118, 30-35.	6.2	49

#	Article	IF	Citations
127	Inverted polymer solar cells with TiO2 electron extraction layers prepared by magnetron sputtering. Science China Chemistry, 2013, 56, 1573-1577.	8.2	12
128	Thermal annealing influence on poly(3-hexyl-thiophene)/phenyl-C61-butyric acid methyl ester-based solar cells with anionic conjugated polyelectrolyte as cathode interface layer. Applied Physics Letters, 2012, 101, .	3.3	17
129	Chemically modified graphene oxides as a hole transport layer in organic solar cells. Chemical Communications, 2012, 48, 8078.	4.1	105
130	Influence of PC60BM or PC70BM as electron acceptor on the performance of polymer solar cells. Solar Energy Materials and Solar Cells, 2012, 97, 71-77.	6.2	95
131	Toward n-channel organic thin film transistors based on a distyryl-bithiophene derivatives. Tetrahedron, 2012, 68, 4664-4671.	1.9	5
132	Formation of intra-island grain boundaries in pentacene monolayers. Physical Chemistry Chemical Physics, 2011, 13, 21102.	2.8	6
133	Recent development of the inverted configuration organic solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 1785-1799.	6.2	210
134	Key role of molecular kinetic energy inÂearlyÂstages ofÂpentacene island growth. Applied Physics A: Materials Science and Processing, 2009, 95, 21-27.	2.3	24
135	Influence of Phenyl Perfluorination on Charge Transport Properties of Distyryl-Oligothiophenes in Organic Field-Effect Transistors. Journal of Physical Chemistry C, 2009, 113, 1567-1574.	3.1	22
136	Grainâ€Boundary Evolution in a Pentacene Monolayer. Advanced Materials, 2008, 20, 3254-3257.	21.0	45
137	Micropatterning of metal films coated on polymer surfaces with epoxy mold and its application to organic field effect transistor fabrication. Applied Physics Letters, 2004, 85, 831-833.	3.3	15
138	Micropatterning of Organic Semiconductor Microcrystalline Materials and OFET Fabrication by "Hot Lift Off― Journal of the American Chemical Society, 2003, 125, 15278-15279.	13.7	71
139	Bottom-contact organic field-effect transistors having low-dielectric layer under source and drain electrodes. Applied Physics Letters, 2003, 82, 3967-3969.	3.3	67