Claire E Mccoy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1778128/publications.pdf

Version: 2024-02-01

20	2.606	361413	477307
30	2,696 citations	20 h-index	29 g-index
papers	Citations	n-muex	g-maex
30	30	30	4963
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Multi-factorial nerve guidance conduit engineering improves outcomes in inflammation, angiogenesis and large defect nerve repair. Matrix Biology, 2022, 106, 34-57.	3.6	14
2	The Key Regulator of Necroptosis, RIP1 Kinase, Contributes to the Formation of Astrogliosis and Glial Scar in Ischemic Stroke. Translational Stroke Research, 2021, 12, 991-1017.	4.2	26
3	Mitochondrial arginase-2 is essential for IL-10 metabolic reprogramming of inflammatory macrophages. Nature Communications, 2021, 12, 1460.	12.8	74
4	Biomaterial and Therapeutic Approaches for the Manipulation of Macrophage Phenotype in Peripheral and Central Nerve Repair. Pharmaceutics, 2021, 13, 2161.	4.5	13
5	The Role of MicroRNAs in Repair Processes in Multiple Sclerosis. Cells, 2020, 9, 1711.	4.1	25
6	Impact of Exercise on Immunometabolism in Multiple Sclerosis. Journal of Clinical Medicine, 2020, 9, 3038.	2.4	14
7	Nanomodulation of Macrophages in Multiple Sclerosis. Cells, 2019, 8, 543.	4.1	53
8	miR-222 isoforms are differentially regulated by type-I interferon. Rna, 2018, 24, 332-341.	3.5	31
9	Optimization Techniques for miRNA Expression in Low Frequency Immune Cell Populations. Methods in Molecular Biology, 2018, 1725, 237-256.	0.9	0
10	miR-155 Dysregulation and Therapeutic Intervention in Multiple Sclerosis. Advances in Experimental Medicine and Biology, 2017, 1024, 111-131.	1.6	37
11	Toll-Like Receptors. Methods in Molecular Biology, 2016, 1390, v.	0.9	1
12	Simple Methods to Investigate MicroRNA Induction in Response to Toll-Like Receptors. Methods in Molecular Biology, 2016, 1390, 159-182.	0.9	1
13	Sequence-dependent off-target inhibition of TLR7/8 sensing by synthetic microRNA inhibitors. Nucleic Acids Research, 2015, 43, 1177-1188.	14.5	39
14	IL-10 regulates <i>Aicda</i> expression through miR-155. Journal of Leukocyte Biology, 2015, 97, 71-78.	3.3	20
15	Inosine-Mediated Modulation of RNA Sensing by Toll-Like Receptor 7 (TLR7) and TLR8. Journal of Virology, 2014, 88, 799-810.	3.4	27
16	The Role of Ets2 Transcription Factor in the Induction of MicroRNA-155 (miR-155) by Lipopolysaccharide and Its Targeting by Interleukin-10. Journal of Biological Chemistry, 2014, 289, 4316-4325.	3.4	98
17	Conjugated linoleic acid suppresses IRF3 activation via modulation of CD14. Journal of Nutritional Biochemistry, 2013, 24, 920-928.	4.2	7
18	miR-19a: An Effective Regulator of SOCS3 and Enhancer of JAK-STAT Signalling. PLoS ONE, 2013, 8, e69090.	2.5	76

#	Article	IF	CITATIONS
19	A miR-19 regulon that controls NF-κB signaling. Nucleic Acids Research, 2012, 40, 8048-8058.	14.5	167
20	Characterization of the cellular action of the MSK inhibitor SB-747651A. Biochemical Journal, 2012, 441, 347-357.	3.7	59
21	The role of miRNAs in cytokine signaling. Frontiers in Bioscience - Landmark, 2011, 16, 2161.	3.0	22
22	MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nature Reviews Immunology, 2011, 11, 163-175.	22.7	800
23	Analysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic Acids Research, 2011, 39, 5692-5703.	14.5	361
24	A Role for TLR4 in Clostridium difficile Infection and the Recognition of Surface Layer Proteins. PLoS Pathogens, 2011, 7, e1002076.	4.7	131
25	IL-10 Inhibits miR-155 Induction by Toll-like Receptors. Journal of Biological Chemistry, 2010, 285, 20492-20498.	3.4	247
26	ERK5 regulation in naÃ⁻ve Tâ€cell activation and survival. European Journal of Immunology, 2008, 38, 2534-2547.	2.9	21
27	Glucocorticoids Inhibit IRF3 Phosphorylation in Response to Toll-like Receptor-3 and -4 by Targeting TBK1 Activation. Journal of Biological Chemistry, 2008, 283, 14277-14285.	3.4	65
28	The role of toll-like receptors in macrophages. Frontiers in Bioscience - Landmark, 2008, 13, 62.	3.0	67
29	Identification of novel phosphorylation sites in MSK1 by precursor ion scanning MS. Biochemical Journal, 2007, 402, 491-501.	3.7	52
30	MSK1 activity is controlled by multiple phosphorylation sites. Biochemical Journal, 2005, 387, 507-517.	3.7	148