
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1778055/publications.pdf Version: 2024-02-01

ΔΙΔΙΟς ΟΡΑΊ/Ν

#	Article	lF	CITATIONS
1	"Greener―Synthesis of Zoledronic Acid from Imidazol-1-yl-acetic Acid and P-Reagents Using Diethyl Carbonate as the Solvent Component. Letters in Organic Chemistry, 2021, 18, 8-12.	0.2	1
2	A Study on the Synthesis of Risedronic Acid: The Role of an Ionic Liquid Additive. Letters in Drug Design and Discovery, 2019, 16, 238-244.	0.4	6
3	The Synthesis of α-Hydroxy- and α-Chlorophosphonic Acid Derivatives Starting from Benzaldehydes and Phosphorous Acid or Dimethyl Phosphite. Current Organic Chemistry, 2019, 23, 968-973.	0.9	0
4	Microwave irradiation and catalysis in organophosphorus chemistry. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 391-395.	0.8	0
5	Rational synthesis of α-hydroxyphosphonic derivatives including dronic acids. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 386-387.	0.8	3
6	Efficient syntheses of zoledronic acid as an active ingredient of a drug against osteoporosis. Synthetic Communications, 2018, 48, 663-671.	1.1	10
7	Synthesis of <scp>d</scp> â€mannitolâ€based crown ethers and their application as catalyst in asymmetric phase transfer reactions. Chirality, 2018, 30, 407-419.	1.3	20
8	Asymmetric cyclopropanation reactions catalyzed by carbohydrate-based crown ethers. Tetrahedron, 2018, 74, 3512-3526.	1.0	21
9	Highly Stereoselective Synthesis of trans-Dihydronarciclasine Analogues. Synthesis, 2018, 50, 625-643.	1.2	4
10	Efficient Synthesis of Ibandronate in the Presence of an Ionic Liquid. Letters in Drug Design and Discovery, 2018, 15, 713-720.	0.4	9
11	Synthesis and Recovery of Pyridine- and Piperidine-based Camphorsulfonamide Organocatalysts Used for Michael Addition Reaction. Periodica Polytechnica: Chemical Engineering, 2018, 62, .	0.5	3
12	Stereoselective synthesis of trans-dihydronarciclasine derivatives containing a 1,4-benzodioxane moiety. Monatshefte Für Chemie, 2018, 149, 2265-2285.	0.9	4
13	10. Dronic acid derivatives – An important group of phosphorus-containing drugs. , 2018, , 199-213.		0
14	Synthesis of <scp>l</scp> â€threitolâ€based crown ethers and their application as enantioselective phase transfer catalyst in Michael additions. Chirality, 2017, 29, 257-272.	1.3	17
15	Investigation of the effect of medium in the preparation of alendronate: till now the best synthesis in the presence of an ionic liquid additive. Heteroatom Chemistry, 2017, 28, e21370.	0.4	7
16	The First Enantioselective Total Synthesis of (â^')- <i>trans</i> -Dihydronarciclasine. Journal of Natural Products, 2017, 80, 1909-1917.	1.5	18
17	Advantages of the Microwave Tool in Organophosphorus Syntheses. Synthesis, 2017, 49, 3069-3083.	1.2	28
18	Proton dissociation properties of arylphosphonates: Determination of accurate Hammett equation parameters. Journal of Pharmaceutical and Biomedical Analysis, 2017, 143, 101-109.	1.4	8

#	Article	IF	CITATIONS
19	Green chemical syntheses and applications within organophosphorus chemistry. Structural Chemistry, 2017, 28, 431-443.	1.0	10
20	The Role of Phosphorus Trichloride and Phosphorous Acid in the Formation of -Hydroxymethylenebisphosphonic Acids from the Corresponding Carboxylic Acids – A Mechanistic Overview. Current Organic Chemistry, 2017, 21, .	0.9	9
21	The Synthesis of 3-Phenylpropidronate Applying Phosphorus Trichloride and Phosphorous Acid in Methanesulfonic Acid. Current Organic Chemistry, 2016, 20, 1745-1752.	0.9	6
22	Efficient Synthesis of Pamidronic Acid Using an Ionic Liquid Additive. Letters in Drug Design and Discovery, 2016, 13, 475-478.	0.4	6
23	Synthesis of Hydroxymethylenebisphosphonic Acid Derivatives in Different Solvents. Molecules, 2016, 21, 1046.	1.7	15
24	Synthetic study on the T3P®-promoted one-pot preparation of 1-substituted-3,4-dihydro-β-carbolines by the reaction of tryptamine with carboxylic acids. Tetrahedron Letters, 2016, 57, 1953-1957.	0.7	17
25	Crown ether derived from d-glucose as an efficient phase-transfer catalyst for the enantioselective Michael addition of malonates to enones. Tetrahedron: Asymmetry, 2016, 27, 960-972.	1.8	22
26	Synthesis of α-d-galactose-based azacrown ethers and their application as enantioselective catalysts in Michael reactions. New Journal of Chemistry, 2016, 40, 7856-7865.	1.4	23
27	Milestones in microwave-assisted organophosphorus chemistry. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1416-1420.	0.8	4
28	The synthesis of dronic acid derivatives in sulfolane or in the presence of ionic liquids as additives. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1619-1620.	0.8	0
29	The Synthesis of Risedronic Acid and Alendronate Applying Phosphorus Oxychloride and Phosphorous Acid in Methanesulfonic Acid. Letters in Drug Design and Discovery, 2015, 12, 253-258.	0.4	6
30	Solid-Liquid Phase C-Alkylation of Active Methylene Containing Compounds under Microwave Conditions. Catalysts, 2015, 5, 634-652.	1.6	16
31	Environmentally Friendly Chemistry with Organophosphorus Syntheses in Focus. Periodica Polytechnica: Chemical Engineering, 2015, 59, 82-95.	0.5	6
32	Microwave Irradiation As a Substitute for Phase Transfer Catalyst in CAlkylation Reactions. Current Green Chemistry, 2015, 2, 254-263.	0.7	6
33	Rational Synthesis of Dronic Acid Derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 2116-2124.	0.8	9
34	Green Chemical Synthesis of Bisphosphonic/Dronic Acid Derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 664-667.	0.8	4
35	Asymmetric Michael Addition of Malonates to Enones Catalyzed by an α-d-Glucopyranoside-Based Crown Ether. Synlett, 2015, 26, 1847-1851.	1.0	33
36	The Rational Synthesis of Fenidronate. Letters in Organic Chemistry, 2014, 11, 368-373.	0.2	11

#	Article	IF	CITATIONS
37	Efficient Synthesis of Benzidronate Applying of Phosphorus Trichloride and Phosphorous Acid. Letters in Drug Design and Discovery, 2014, 12, 78-84.	0.4	5
38	Dialkylation of Diethyl Ethoxycarbonylmethylphosphonate under Microwave and Solventless Conditions. Heteroatom Chemistry, 2014, 25, 107-113.	0.4	12
39	"Greener―synthesis of bisphosphonic/dronic acid derivatives. Green Processing and Synthesis, 2014, 3, 111-116.	1.3	10
40	Enantioselective Michael addition of malonates to aromatic nitroalkenes catalyzed by monosaccharide-based chiral crown ethers. Tetrahedron: Asymmetry, 2014, 25, 141-147.	1.8	31
41	The Synthesis of Pamidronic Derivatives in Different Solvents: An Optimization and a Mechanistic Study. Heteroatom Chemistry, 2014, 25, 186-193.	0.4	16
42	Environmentally Friendly Syntheses and Tools. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 39-41.	0.8	2
43	A new xantphos-type ligand and its gold(I) complexes: Synthesis, structure, luminescence. Polyhedron, 2013, 55, 57-66.	1.0	7
44	Microwave-Assisted Amidation of Arylacetic Acids by Reaction with 2-Aryl-ethylamines. Synthetic Communications, 2013, 43, 1491-1498.	1.1	5
45	Optimized Synthesis of Etidronate. Letters in Drug Design and Discovery, 2013, 10, 733-737.	0.4	10
46	Microwave Irradiation and Phase Transfer Catalysis in C-, O- and N-Alkylation Reactions Current Organic Synthesis, 2013, 10, 751-763.	0.7	33
47	Microwave-Assisted Organophosphorus Synthesis. Current Organic Chemistry, 2013, 17, 545-554.	0.9	38
48	Rational Synthesis of Ibandronate and Alendronate. Current Organic Synthesis, 2013, 10, 640-644.	0.7	19
49	N-Heterocyclic Dronic Acids: Applications and Synthesis. Mini-Reviews in Medicinal Chemistry, 2012, 12, 313-325.	1.1	44
50	Synthesis and Proton Dissociation Properties of Arylphosphonates: A Microwaveâ€Assisted Catalytic Arbuzov Reaction with Aryl Bromides. Heteroatom Chemistry, 2012, 23, 574-582.	0.4	45
51	Microwaveâ€assisted alkylation of diethyl ethoxycarbonylmethylphosphonate under solventless conditions. Heteroatom Chemistry, 2012, 23, 241-246.	0.4	17
52	Microwave-Assisted Esterification of Phosphinic Acids by Alcohols, Phenols, and Alkyl Halogenides. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 802-803.	0.8	3
53	Solid–liquid twoâ€phase alkylation of tetraethyl methylenebisphosphonate under microwave irradiation. Heteroatom Chemistry, 2011, 22, 11-14.	0.4	26
54	Solid–liquid phase alkylation of P=O–functionalized CH acidic compounds utilizing phase transfer catalysis and microwave irradiation. Heteroatom Chemistry, 2011, 22, 174-179.	0.4	25

#	Article	IF	CITATIONS
55	Phenylâ€; benzylâ€; and unsymmetrical hydroxyâ€methylenebisphosphonates as dronic acid ester analogues from αâ€oxophosphonates by microwaveâ€assisted syntheses. Heteroatom Chemistry, 2011, 22, 640-648.	0.4	29
56	Asymmetric C–C bond formation via Darzens condensation and Michael addition using monosaccharide-based chiral crown ethers. Tetrahedron Letters, 2011, 52, 1473-1476.	0.7	43
57	Optimized synthesis of N-heterocyclic dronic acids; closing a black-box era. Tetrahedron Letters, 2011, 52, 2744-2746.	0.7	37
58	Quaternary Phosphonium Salt and 1,3-Dialkylimidazolium Hexafluorophosphate lonic Liquids as Green Chemical Tools in Organic Syntheses. Current Organic Chemistry, 2011, 15, 3824-3848.	0.9	27
59	Microwave-Assisted Esterification of Phosphinic Acids. Current Organic Chemistry, 2011, 15, 1802-1810.	0.9	69
60	Green Chemical Tools in Organophosphorus Chemistry—Organophosphorus Tools in Green Chemistry. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 613-620.	0.8	15
61	Solid–Liquid Phase Alkylation of <i>N</i> -Heterocycles: Microwave-Assisted Synthesis as an Environmentally Friendly Alternative. Synthetic Communications, 2010, 40, 2291-2301.	1.1	26
62	Monitoring the Phosphorylation of Phenol Derivatives with Diethyl Chlorophosphate in Liquid–Liquid and Solid–Liquid Phase by In Situ Fourier Transform Infrared Spectroscopy, Part II. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 185, 2333-2340.	0.8	2
63	lonophore–gold nanoparticle conjugates for Ag+-selective sensors with nanomolar detection limit. Chemical Communications, 2010, 46, 607-609.	2.2	55
64	Monitoring the Phosphorylation of Phenol with Diethyl Chlorophosphate in Aqueous Medium in the Presence of Sodium Hydroxide by in Situ Fourier Transform Infrared Spectroscopy. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 185, 832-837.	0.8	4
65	Heterogeneous Phase Alkylation of Phenols Making Use of Phase Transfer Catalysis and Microwave Irradiation. Letters in Organic Chemistry, 2009, 6, 535-539.	0.2	21
66	Synthesis of αâ€hydroxyâ€methylenebisphosâ€phonates by the microwaveâ€assisted reaction of αâ€oxophosphonates and dialkyl phosphites under solventless conditions. Heteroatom Chemistry, 2009, 20, 350-354.	0.4	43
67	Calixarene/Nafionâ€Modified Bismuthâ€Film Electrodes for Adsorptive Stripping Voltammetric Determination of Lead. Electroanalysis, 2009, 21, 1961-1969.	1.5	28
68	Microwave Irradiation as a Useful Tool in Organophosphorus Syntheses. Phosphorus, Sulfur and Silicon and the Related Elements, 2009, 184, 1648-1652.	0.8	13
69	Cyclization of p-tert-Butylcalix[6]arene with Diols Under the Mitsunobu Protocol. A Conformational Study of the Peralkylated Derivatives. Letters in Organic Chemistry, 2009, 6, 311-315.	0.2	1
70	The Role of Phase Transfer Catalysis in the Microwave-Assisted N-Benzylation of Amides, Imides and N-Heterocycles. Letters in Organic Chemistry, 2009, 6, 529-534.	0.2	6
71	Chemoselectivity in the microwave-assisted solvent-free solid–liquid phase benzylation of phenols: O- versus C-alkylation. Tetrahedron Letters, 2008, 49, 5039-5042.	0.7	36
72	Studies on inclusion complexes of calix[4]arenes capped by diamide bridges with small organic molecules. Magnetic Resonance in Chemistry, 2008, 46, 707-712.	1.1	1

#	Article	IF	CITATIONS
73	Highly enantioselective organocatalytic conjugate addition of nitromethane to benzylidene acetones. Chirality, 2008, 20, 1120-1126.	1.3	12
74	Synthesis, optical and electroanalytical characterizations of a thiacalix[4](N-phenylazacrown-5)ether–BODIPY ionophore. Tetrahedron, 2008, 64, 1058-1063.	1.0	20
75	Synthesis, Characterization and Cation-Induced Isomerization of Photochromic Calix[4](aza)crown-Indolospiropyran Conjugates. Supramolecular Chemistry, 2008, 20, 255-263.	1.5	4
76	Crown bridged thiacalix[4]arenes as cesium-selective ionophores in solvent polymeric membrane electrodes. Analytica Chimica Acta, 2006, 569, 42-49.	2.6	26
77	Novel potentiometric and optical silver ion-selective sensors with subnanomolar detection limits. Analytica Chimica Acta, 2006, 572, 1-10.	2.6	90
78	Functionalized thiacalix- and calix[4]arene-based Ag+ ionophores: synthesis and comparative NMR study. Tetrahedron, 2006, 62, 10215-10222.	1.0	34
79	1,1'-Binaphtho(aza)crowns Carrying Photochromic Signalling Unit, I: Synthesis, Characterization and Cation Recognition Properties. Supramolecular Chemistry, 2006, 18, 67-76.	1.5	10
80	Complex formation between aliphatic amines and chromogenic calix[4]arene derivatives studied by FT–IR spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 62, 506-517.	2.0	18
81	Catalytic enantioselective Michael addition in the synthesis of α-aminophosphonates. Tetrahedron: Asymmetry, 2005, 16, 3837-3840.	1.8	40
82	1H and 7Li NMR Study on the Complex Formation of Lithium Cations with Pyridinium Derivatives of Calix[4]arenes. Supramolecular Chemistry, 2004, 16, 415-421.	1.5	4
83	Absorption, fluorescence, and cd spectroscopic study of chiral recognition by a binaphthyl-derived chromogenic calixcrown host. Chirality, 2004, 16, 174-179.	1.3	19
84	Selective O-alkylations with glycol chlorohydrins via the Mitsunobu reaction. A versatile route to calix[4]- and 1,1′-binaphthocrowns. Tetrahedron, 2004, 60, 5041-5048.	1.0	13
85	Unprecedented Cyclizations of Calix[4]arenes with Glycols under the Mitsunobu Protocol, Part 2.10,0-and O,S-Bridged Calixarenes. Organic Letters, 2004, 6, 477-480.	2.4	19
86	Synthesis and Optical Investigation of Chromogenic 1,3-Calix[4]crowns. Supramolecular Chemistry, 2004, 16, 239-246.	1.5	9
87	Unprecedented cyclisations of calix[4]arenes with glycols under the Mitsunobu protocol. Part 1: A new perspective for the synthesis of calixcrowns. Tetrahedron Letters, 2003, 44, 4681-4684.	0.7	32
88	Synthesis of chiral 1,3-calix[4](crown-6) ethers as potential mediators for asymmetric recognition processes. Tetrahedron: Asymmetry, 2003, 14, 1025-1035.	1.8	28
89	Proton transfer and supramolecular complex formation between Nile Blue and tetraundecylcalix[4]resorcinarene—a fluorescence spectroscopic study. Perkin Transactions II RSC, 2002, , 1784-1789.	1.1	9
90	Stereochemistry of capped calix[4]arenes in liquid and solid phase by NMR spectroscopy. Perkin Transactions II RSC, 2002, , 1187-1192.	1.1	7

#	Article	IF	CITATIONS
91	Anisotropy decay study on the host–guest interaction of distally dialkylated calix[4]arenes with 1-chloro-4-(trifluoromethyl)benzene. Journal of Proteomics, 2002, 53, 101-108.	2.4	6
92	Photochromism of a spiropyran derivative of 1,3-calix[4]crown-5. Journal of Molecular Structure, 2002, 614, 69-73.	1.8	20
93	Synthesis and alkali cation extraction ability of 1,3-alt-thiacalix[4]bis(crown) ethers. Tetrahedron Letters, 2002, 43, 4153-4156.	0.7	39
94	Synthesis and alkali cation extraction ability of 1,3-alt-thiacalix[4]mono(crown) ethers. Tetrahedron Letters, 2002, 43, 7627-7629.	0.7	38
95	Solvent effect on the complex formation of distally dialkylated calix[4]arenes with 1-chloro-4-(trifluoromethyl)benzene. Analytica Chimica Acta, 2002, 461, 273-279.	2.6	30
96	Synthesis and Structure Elucidation of Chromogenic Calix[4]arene Indophenols Capped by Carboxamide Bridges. European Journal of Organic Chemistry, 2001, 2001, 61-71.	1.2	24
97	Synthesis and Conformational Analysis of Dicationic N,N′-Bridged Bis(benzimidazolium) and Bis(imidazolium) Macrocycles. European Journal of Organic Chemistry, 2001, 2001, 2861.	1.2	22
98	Cavity shaped host–guest interaction of distally dialkylated calix[4]arenes with 1-chloro-4-(trifluoromethyl)benzene. Analytica Chimica Acta, 2001, 443, 227-234.	2.6	22
99	Studies on Calix(aza)crqwns, III. Synthesis of 1,3-Alternate Calix[4]arenes Capped by Diamide Bridges. Synthetic Communications, 1999, 29, 3905-3917.	1.1	11
100	Studies on calix(aza)crowns, II. Synthesis of novel proximal doubly bridged calix[4]arenes by intramolecular ring closure of syn 1,3-and 1,2-ï‰-chloroalkylamides. Tetrahedron, 1998, 54, 3857-3870.	1.0	36
101	Novel chromogenic pyridinium derivatives of calix[4]arenes,II. Tetrahedron, 1997, 53, 16867-16876.	1.0	18
102	Studies on calix(aza)crowns, I. Synthesis, alkylation reactions and comprehensive NMR investigation of capped calix[4]arenes. Tetrahedron, 1997, 53, 9799-9812.	1.0	62
103	Novel chromogenic pyridinium derivatives of calix[4]arenes, I. Tetrahedron, 1996, 52, 639-646.	1.0	34
104	An easy access to tetra-o-alkylated calix[4]arenes of cone conformation. Tetrahedron, 1995, 51, 7835-7840.	1.0	32
105	Chromogenic calix[4]arene as ionophore for potentiometric and optical sensors. Talanta, 1994, 41, 1041-1049.	2.9	67
106	The synthesis of hydroxymethylenebisphosphonic- (dronic-) and acyl-ethoxycarbonyl-methylphosphonate derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 0, , 1-3.	0.8	0