
Yoshimi Nakagawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1777961/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Morphological and functional adaptation of pancreatic islet blood vessels to insulin resistance is impaired in diabetic db/db mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166339.	1.8	4
2	Predictive ability of current machine learning algorithms for type 2 diabetes mellitus: A metaâ€analysis. Journal of Diabetes Investigation, 2022, 13, 900-908.	1.1	16
3	CREBH regulation of lipid metabolism through multifaceted functions that improve arteriosclerosis. Journal of Diabetes Investigation, 2022, 13, 1129-1131.	1.1	Ο
4	Multi‑omics analysis of right ventricles in rat models of pulmonary arterial hypertension: Consideration of mitochondrial biogenesis by chrysin. International Journal of Molecular Medicine, 2022, 49, .	1.8	3
5	Enterohepatic Transcription Factor CREB3L3 Protects Atherosclerosis via SREBP Competitive Inhibition. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 949-971.	2.3	11
6	Starvationâ€induced transcription factor CREBH negatively governs body growth by controlling GH signaling. FASEB Journal, 2021, 35, e21663.	0.2	6
7	CtBP2 confers protection against oxidative stress through interactions with NRF1 and NRF2. Biochemical and Biophysical Research Communications, 2021, 562, 146-153.	1.0	5
8	CREBH Systemically Regulates Lipid Metabolism by Modulating and Integrating Cellular Functions. Nutrients, 2021, 13, 3204.	1.7	2
9	Prolonged caloric restriction ameliorates age-related atrophy in slow and fast muscle fibers of rat soleus muscle. Experimental Gerontology, 2021, 154, 111519.	1.2	7
10	Altered microbiota by a high-fat diet accelerates lethal myeloid hematopoiesis associated with systemic SOCS3 deficiency. IScience, 2021, 24, 103117.	1.9	5
11	Carrot Consumption Frequency Associated with Reduced BMI and Obesity through the SNP Intermediary rs4445711. Nutrients, 2021, 13, 3478.	1.7	Ο
12	Hepatocyte ELOVL Fatty Acid Elongase 6 Determines Ceramide Acylâ€Chain Length and Hepatic Insulin Sensitivity in Mice. Hepatology, 2020, 71, 1609-1625.	3.6	44
13	Transcriptional co-repressor CtBP2 orchestrates epithelial-mesenchymal transition through a novel transcriptional holocomplex with OCT1. Biochemical and Biophysical Research Communications, 2020, 523, 354-360.	1.0	12
14	Srebp-1c/Fgf21/Pgc-1α Axis Regulated by Leptin Signaling in Adipocytes—Possible Mechanism of Caloric Restriction-Associated Metabolic Remodeling of White Adipose Tissue. Nutrients, 2020, 12, 2054.	1.7	19
15	CREBH Improves Diet-Induced Obesity, Insulin Resistance, and Metabolic Disturbances by FGF21-Dependent and FGF21-Independent Mechanisms. IScience, 2020, 23, 100930.	1.9	12
16	Elucidation of Molecular Mechanism of a Selective PPARα Modulator, Pemafibrate, through Combinational Approaches of X-ray Crystallography, Thermodynamic Analysis, and First-Principle Calculations. International Journal of Molecular Sciences, 2020, 21, 361.	1.8	20
17	WWP1 knockout in mice exacerbates obesityâ€related phenotypes in white adipose tissue but improves wholeâ€body glucose metabolism. FEBS Open Bio, 2020, 10, 306-315.	1.0	10
18	Cathepsin B overexpression induces degradation of perilipin 1 to cause lipid metabolism dysfunction in adipocytes. Scientific Reports, 2020, 10, 634.	1.6	30

Yoshimi Nakagawa

#	Article	IF	CITATIONS
19	Association between Lysosomal Dysfunction and Obesity-Related Pathology: A Key Knowledge to Prevent Metabolic Syndrome. International Journal of Molecular Sciences, 2019, 20, 3688.	1.8	30
20	Glucocorticoid receptor suppresses gene expression of Revâ€erbα (Nr1d1) through interaction with the <scp>CLOCK</scp> complex. FEBS Letters, 2019, 593, 423-432.	1.3	21
21	Octacosanol and policosanol prevent high-fat diet-induced obesity and metabolic disorders by activating brown adipose tissue and improving liver metabolism. Scientific Reports, 2019, 9, 5169.	1.6	31
22	Exercise training reduces ventricular arrhythmias through restoring calcium handling and sympathetic tone in myocardial infarction mice. Physiological Reports, 2019, 7, e13972.	0.7	17
23	Epigenetic modulation of Fgf21 in the perinatal mouse liver ameliorates diet-induced obesity in adulthood. Nature Communications, 2018, 9, 636.	5.8	67
24	A candidate functional <scp>SNP</scp> rs7074440 in <i><scp>TCF</scp>7L2</i> alters gene expression through Câ€ <scp>FOS</scp> in hepatocytes. FEBS Letters, 2018, 592, 422-433.	1.3	9
25	Molecular association model of PPARα and its new specific and efficient ligand, pemafibrate: Structural basis for SPPARMα. Biochemical and Biophysical Research Communications, 2018, 499, 239-245.	1.0	47
26	Influence of acute exercise on renalase and its regulatory mechanism. Life Sciences, 2018, 210, 235-242.	2.0	17
27	The Peroxisome Proliferator-Activated Receptor α (PPARα) Agonist Pemafibrate Protects against Diet-Induced Obesity in Mice. International Journal of Molecular Sciences, 2018, 19, 2148.	1.8	43
28	CREBH Regulates Systemic Glucose and Lipid Metabolism. International Journal of Molecular Sciences, 2018, 19, 1396.	1.8	62
29	Transgenic Mice Overexpressing SREBP-1a in Male ob/ob Mice Exhibit Lipodystrophy and Exacerbate Insulin Resistance. Endocrinology, 2018, 159, 2308-2323.	1.4	14
30	Selective peroxisome proliferatorâ€activated receptorâ€Î± modulator Kâ€877 efficiently activates the peroxisome proliferatorâ€activated receptorâ€Î± pathway and improves lipid metabolism in mice. Journal of Diabetes Investigation, 2017, 8, 446-452.	1.1	34
31	Elovl6 Deficiency Improves Glycemic Control in Diabetic <i>db</i> / <i>db</i> Mice by Expanding β-Cell Mass and Increasing Insulin Secretory Capacity. Diabetes, 2017, 66, 1833-1846.	0.3	29
32	Critical role of CREBHâ€mediated induction of transforming growth factor β2 by hepatitis C virus infection in fibrogenic responses in hepatic stellate cells. Hepatology, 2017, 66, 1430-1443.	3.6	23
33	Effects of K-877, a novel selective PPARα modulator, on small intestine contribute to the amelioration of hyperlipidemia in low-density lipoprotein receptor knockout mice. Journal of Pharmacological Sciences, 2017, 133, 214-222.	1.1	36
34	A key role of nuclear factor Y in the refeeding response of fatty acid synthase in adipocytes. FEBS Letters, 2017, 591, 965-978.	1.3	15
35	Effect of sodium-glucose cotransporter 2 (SGLT2) inhibition on weight loss is partly mediated by liver-brain-adipose neurocircuitry. Biochemical and Biophysical Research Communications, 2017, 493, 40-45.	1.0	22
36	Mitochondrial intermediate peptidase is a novel regulator of sirtuinâ€3 activation by caloric restriction. FEBS Letters, 2017, 591, 4067-4073.	1.3	16

Yoshimi Nakagawa

#	Article	IF	CITATIONS
37	Crucial Role of Elovl6 in Chondrocyte Growth and Differentiation during Growth Plate Development in Mice. PLoS ONE, 2016, 11, e0159375.	1.1	8
38	CREB3L3 controls fatty acid oxidation and ketogenesis in synergy with PPARα. Scientific Reports, 2016, 6, 39182.	1.6	45
39	KLF15 Enables Rapid Switching between Lipogenesis and Gluconeogenesis during Fasting. Cell Reports, 2016, 16, 2373-2386.	2.9	94
40	Intestinal CREBH overexpression prevents high-cholesterol diet-induced hypercholesterolemia by reducing Npc1I1 expression. Molecular Metabolism, 2016, 5, 1092-1102.	3.0	32
41	Hyperlipidemia and hepatitis in liver-specific CREB3L3 knockout mice generated using a one-step CRISPR/Cas9 system. Scientific Reports, 2016, 6, 27857.	1.6	31
42	Different Effects of Eicosapentaenoic and Docosahexaenoic Acids on Atherogenic High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice. PLoS ONE, 2016, 11, e0157580.	1.1	50
43	Ligand-Activated PPARα-Dependent DNA Demethylation Regulates the Fatty Acid β-Oxidation Genes in the Postnatal Liver. Diabetes, 2015, 64, 775-784.	0.3	53
44	Identification of human ELOVL5 enhancer regions controlled by SREBP. Biochemical and Biophysical Research Communications, 2015, 465, 857-863.	1.0	20
45	Skeletal muscle-specific HMG-CoA reductase knockout mice exhibit rhabdomyolysis: A model for statin-induced myopathy. Biochemical and Biophysical Research Communications, 2015, 466, 536-540.	1.0	59
46	Absence of Elovl6 attenuates steatohepatitis but promotes gallstone formation in a lithogenic diet-fed Ldlrâ^'/â^' mouse model. Scientific Reports, 2015, 5, 17604.	1.6	20
47	Hepatic CREB3L3 Controls Whole-Body Energy Homeostasis and Improves Obesity and Diabetes. Endocrinology, 2014, 155, 4706-4719.	1.4	49
48	Ablation of Elovl6 protects pancreatic islets from high-fat diet-induced impairment of insulin secretion. Biochemical and Biophysical Research Communications, 2014, 450, 318-323.	1.0	15
49	TFE3 Controls Lipid Metabolism in Adipose Tissue of Male Mice by Suppressing Lipolysis and Thermogenesis. Endocrinology, 2013, 154, 3577-3588.	1.4	31
50	TFE3 regulates muscle metabolic gene expression, increases glycogen stores, and enhances insulin sensitivity in mice. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E896-E902.	1.8	31
51	Dicer has a crucial role in the early stage of adipocyte differentiation, but not in lipid synthesis, in 3T3-L1 cells. Biochemical and Biophysical Research Communications, 2012, 420, 931-936.	1.0	14
52	The liver-enriched transcription factor CREBH is nutritionally regulated and activated by fatty acids and PPARα. Biochemical and Biophysical Research Communications, 2010, 391, 1222-1227.	1.0	60
53	The up-regulation of microRNA-335 is associated with lipid metabolism in liver and white adipose tissue of genetically obese mice. Biochemical and Biophysical Research Communications, 2009, 385, 492-496.	1.0	173
54	SREBP-1-independent regulation of lipogenic gene expression in adipocytes. Journal of Lipid Research, 2007, 48, 1581-1591.	2.0	111

#	Article	IF	CITATIONS
55	TFE3 transcriptionally activates hepatic IRS-2, participates in insulin signaling and ameliorates diabetes. Nature Medicine, 2006, 12, 107-113.	15.2	168