List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/177795/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. Proceedings of the United States of America, 2005, 102, 5326-5333.	3.3	1,234
2	The CALIPSO Mission. Bulletin of the American Meteorological Society, 2010, 91, 1211-1230.	1.7	847
3	Tropical tropopause layer. Reviews of Geophysics, 2009, 47, .	9.0	827
4	On the Correlatedk-Distribution Method for Radiative Transfer in Nonhomogeneous Atmospheres. Journals of the Atmospheric Sciences, 1992, 49, 2139-2156.	0.6	772
5	Parameterization of the Radiative Properties of Cirrus Clouds. Journals of the Atmospheric Sciences, 1993, 50, 2008-2025.	0.6	756
6	Widening of the tropical belt in a changing climate. Nature Geoscience, 2008, 1, 21-24.	5.4	744
7	Expansion of global drylands under a warming climate. Atmospheric Chemistry and Physics, 2013, 13, 10081-10094.	1.9	685
8	Dryland climate change: Recent progress and challenges. Reviews of Geophysics, 2017, 55, 719-778.	9.0	507
9	A Drier Future?. Science, 2014, 343, 737-739.	6.0	469
10	An Accurate Parameterization of the Solar Radiative Properties of Cirrus Clouds for Climate Models. Journal of Climate, 1996, 9, 2058-2082.	1.2	438
11	Observed poleward expansion of the Hadley circulation since 1979. Atmospheric Chemistry and Physics, 2007, 7, 5229-5236.	1.9	404
12	Enhanced Mid-Latitude Tropospheric Warming in Satellite Measurements. Science, 2006, 312, 1179-1179.	6.0	314
13	Hadley Cell Widening: Model Simulations versus Observations. Journal of Climate, 2009, 22, 2713-2725.	1.2	302
14	An Accurate Parameterization of the Infrared Radiative Properties of Cirrus Clouds for Climate Models. Journal of Climate, 1998, 11, 2223-2237.	1.2	298
15	Mie theory for light scattering by a spherical particle in an absorbing medium. Applied Optics, 2001, 40, 1354.	2.1	296
16	Amplification of Surface Temperature Trends and Variability in the Tropical Atmosphere. Science, 2005, 309, 1551-1556.	6.0	267
17	Responses of terrestrial aridity to global warming. Journal of Geophysical Research D: Atmospheres, 2014, 119, 7863-7875.	1.2	253
18	Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints. Atmospheric Chemistry and Physics, 2009, 9, 4011-4021.	1.9	251

#	Article	IF	CITATIONS
19	Multiple Scattering Parameterization in Thermal Infrared Radiative Transfer. Journals of the Atmospheric Sciences, 1997, 54, 2799-2812.	0.6	236
20	Improvements of an Ice-Phase Microphysics Parameterization for Use in Numerical Simulations of Tropical Convection. Journal of Applied Meteorology and Climatology, 1995, 34, 281-287.	1.7	233
21	Contribution of stratospheric cooling to satellite-inferred tropospheric temperature trends. Nature, 2004, 429, 55-58.	13.7	213
22	Radiation balance of the tropical tropopause layer. Journal of Geophysical Research, 2004, 109, .	3.3	156
23	Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition. Applied Optics, 1999, 38, 3141.	2.1	151
24	The impact of cirrus clouds on tropical troposphere-to-stratosphere transport. Atmospheric Chemistry and Physics, 2006, 6, 2539-2547.	1.9	137
25	Simulated versus observed patterns of warming over the extratropical Northern Hemisphere continents during the cold season. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14337-14342.	3.3	134
26	Dust and Black Carbon in Seasonal Snow Across Northern China. Bulletin of the American Meteorological Society, 2011, 92, 175-181.	1.7	132
27	Interactions of Radiation and Convection in Simulated Tropical Cloud Clusters. Journals of the Atmospheric Sciences, 1995, 52, 1310-1328.	0.6	130
28	Radiative impacts of clouds in the tropical tropopause layer. Journal of Geophysical Research, 2010, 115, .	3.3	108
29	A New Parameterization of an Asymmetry Factor of Cirrus Clouds for Climate Models. Journals of the Atmospheric Sciences, 2007, 64, 4140-4150.	0.6	105
30	Human influence on the seasonal cycle of tropospheric temperature. Science, 2018, 361, .	6.0	103
31	Dust aerosol optical properties retrieval and radiative forcing over northwestern China during the 2008 Chinaâ€U.S. joint field experiment. Journal of Geophysical Research, 2010, 115, .	3.3	100
32	On the warming in the tropical upper troposphere: Models versus observations. Geophysical Research Letters, 2011, 38, .	1.5	94
33	Poleward Shift of Subtropical Jets Inferred from Satellite-Observed Lower-Stratospheric Temperatures. Journal of Climate, 2011, 24, 5597-5603.	1.2	94
34	Mean radiative energy balance and vertical mass fluxes in the equatorial upper troposphere and lower stratosphere. Geophysical Research Letters, 2005, 32, .	1.5	92
35	Recent Tropical Expansion: Natural Variability or Forced Response?. Journal of Climate, 2019, 32, 1551-1571.	1.2	87
36	Test of Mie-based single-scattering properties of non-spherical dust aerosols in radiative flux calculations. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110, 1640-1653.	1.1	81

#	Article	IF	CITATIONS
37	Dynamical Adjustment of the Northern Hemisphere Surface Air Temperature Field: Methodology and Application to Observations*. Journal of Climate, 2015, 28, 1613-1629.	1.2	77
38	Simulated differences in 21st century aridity due to different scenarios of greenhouse gases and aerosols. Climatic Change, 2018, 146, 407-422.	1.7	76
39	Changes in various branches of the Brewer–Dobson circulation from an ensemble of chemistry climate models. Journal of Geophysical Research D: Atmospheres, 2013, 118, 73-84.	1.2	75
40	Effect of Snow Grain Shape on Snow Albedo. Journals of the Atmospheric Sciences, 2016, 73, 3573-3583.	0.6	74
41	Identifying the top of the tropical tropopause layer from vertical mass flux analysis and CALIPSO lidar cloud observations. Geophysical Research Letters, 2007, 34, .	1.5	72
42	Comparing Tropospheric Warming in Climate Models and Satellite Data. Journal of Climate, 2017, 30, 373-392.	1.2	72
43	Satellite-derived vertical dependence of tropical tropospheric temperature trends. Geophysical Research Letters, 2005, 32, .	1.5	71
44	Tropical cirrus and water vapor: an effective Earth infrared iris feedback?. Atmospheric Chemistry and Physics, 2002, 2, 31-37.	1.9	69
45	Parameterization of effective ice particle size for high-latitude clouds. International Journal of Climatology, 2002, 22, 1267-1284.	1.5	66
46	Observed Temperature Changes in the Troposphere and Stratosphere from 1979 to 2018. Journal of Climate, 2020, 33, 8165-8194.	1.2	66
47	Temperature Trend Patterns in Southern Hemisphere High Latitudes: Novel Indicators of Stratospheric Change. Journal of Climate, 2009, 22, 6325-6341.	1.2	65
48	Modeling of Scattering and Absorption by Nonspherical Cirrus Ice Particles at Thermal Infrared Wavelengths. Journals of the Atmospheric Sciences, 1999, 56, 2937-2947.	0.6	63
49	Discrepancies in tropical upper tropospheric warming between atmospheric circulation models and satellites. Environmental Research Letters, 2012, 7, 044018.	2.2	60
50	Cloud Geometry Effects on Atmospheric Solar Absorption. Journals of the Atmospheric Sciences, 2000, 57, 1156-1168.	0.6	56
51	Sensitivity of precipitation extremes to radiative forcing of greenhouse gases and aerosols. Geophysical Research Letters, 2016, 43, 9860-9868.	1.5	55
52	Tropical Tropopause Transition Layer Cirrus as Represented by CALIPSO Lidar Observations. Journals of the Atmospheric Sciences, 2010, 67, 3113-3129.	0.6	53
53	Unraveling driving forces explaining significant reduction in satellite-inferred Arctic surface albedo since the 1980s. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23947-23953.	3.3	51
54	Black carbon in seasonal snow across northern Xinjiang in northwestern China. Environmental Research Letters, 2012, 7, 044002.	2.2	50

#	Article	IF	CITATIONS
55	Removing Diurnal Cycle Contamination in Satellite-Derived Tropospheric Temperatures: Understanding Tropical Tropospheric Trend Discrepancies. Journal of Climate, 2015, 28, 2274-2290.	1.2	50
56	Cirrus horizontal inhomogeneity and OLR bias. Geophysical Research Letters, 2000, 27, 3341-3344.	1.5	49
57	lsotopic evidence of multiple controls on atmospheric oxidants over climate transitions. Nature, 2017, 546, 133-136.	13.7	49
58	Comparison of cloud-top height retrievals from ground-based 35 GHz MMCR and GMS-5 satellite observations at ARM TWP Manus site. Atmospheric Research, 2004, 72, 169-186.	1.8	48
59	Observational evidence of strengthening of the Brewerâ€Dobson circulation since 1980. Journal of Geophysical Research D: Atmospheres, 2015, 120, 10,214.	1.2	48
60	Measurements of lightâ€absorbing particles in snow across the Arctic, North America, and China: Effects on surface albedo. Journal of Geophysical Research D: Atmospheres, 2017, 122, 10,149.	1.2	47
61	Simulating direct effects of dust aerosol on arid and semiâ€arid regions using an aerosol–climate coupled system. International Journal of Climatology, 2015, 35, 1858-1866.	1.5	45
62	Impact of clouds on radiative heating rates in the tropical lower stratosphere. Journal of Geophysical Research, 2006, 111, .	3.3	44
63	Antarctic atmospheric temperature trend patterns from satellite observations. Geophysical Research Letters, 2007, 34, .	1.5	44
64	Comparison of the CALIPSO satellite and ground-based observations of cirrus clouds at the ARM TWP sites. Journal of Geophysical Research, 2011, 116, .	3.3	43
65	Observationally derived and general circulation model simulated tropical stratospheric upward mass fluxes. Journal of Geophysical Research, 2008, 113, .	3.3	41
66	Source attribution of insoluble light-absorbing particles in seasonal snow across northern China. Atmospheric Chemistry and Physics, 2013, 13, 6091-6099.	1.9	40
67	Causes of differences in model and satellite tropospheric warming rates. Nature Geoscience, 2017, 10, 478-485.	5.4	40
68	Apparent optical properties of spherical particles in absorbing medium. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006, 100, 137-142.	1.1	38
69	Stratospheric Influences on MSU-Derived Tropospheric Temperature Trends: A Direct Error Analysis. Journal of Climate, 2004, 17, 4636-4640.	1.2	37
70	Finite-difference time-domain solution of light scattering by dielectric particles with large complex refractive indices. Applied Optics, 2000, 39, 5569.	2.1	36
71	Changes in terrestrial aridity for the period 850–2080 from the Community Earth System Model. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2857-2873.	1.2	35
72	Mirrored changes in Antarctic ozone and stratospheric temperature in the late 20th versus early 21st centuries. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8940-8950.	1.2	35

#	Article	IF	CITATIONS
73	Sources of Intermodel Spread in the Lapse Rate and Water Vapor Feedbacks. Journal of Climate, 2018, 31, 3187-3206.	1.2	35
74	Automated Retrieval of Cloud and Aerosol Properties from the ARM Raman Lidar. Part I: Feature Detection. Journal of Atmospheric and Oceanic Technology, 2015, 32, 1977-1998.	0.5	34
75	Celebrating the anniversary of three key events in climate change science. Nature Climate Change, 2019, 9, 180-182.	8.1	34
76	Arctic warming aloft is data set dependent. Nature, 2008, 455, E3-E4.	13.7	33
77	Macrophysical properties of tropical cirrus clouds from the CALIPSO satellite and from groundâ€based micropulse and Raman lidars. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9209-9220.	1.2	33
78	Automated Retrieval of Cloud and Aerosol Properties from the ARM Raman Lidar. Part II: Extinction. Journal of Atmospheric and Oceanic Technology, 2015, 32, 1999-2023.	0.5	33
79	Precipitation Probability and Its Future Changes From a Global Cloudâ€Resolving Model and CMIP6 Simulations. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031926.	1.2	31
80	Tropical Widening: From Global Variations to Regional Impacts. Bulletin of the American Meteorological Society, 2020, 101, E897-E904.	1.7	31
81	Dust aerosol forward scattering effects on ground-based aerosol optical depth retrievals. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112, 310-319.	1.1	30
82	Taklimakan Desert nocturnal low-level jet: climatology and dust activity. Atmospheric Chemistry and Physics, 2016, 16, 7773-7783.	1.9	30
83	CALIPSOâ€inferred aerosol direct radiative effects: Bias estimates using groundâ€based Raman lidars. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12,209.	1.2	29
84	The impact of atmospheric stability and wind shear on vertical cloud overlap over the Tibetan Plateau. Atmospheric Chemistry and Physics, 2018, 18, 7329-7343.	1.9	29
85	Robustness of Tropospheric Temperature Trends from MSU Channels 2 and 4. Journal of Climate, 2006, 19, 4234-4242.	1.2	28
86	Tropospheric temperature response to stratospheric ozone recovery in the 21st century. Atmospheric Chemistry and Physics, 2011, 11, 7687-7699.	1.9	28
87	Hemispheric Asymmetry of Tropical Expansion Under CO ₂ Forcing. Geophysical Research Letters, 2019, 46, 9231-9240.	1.5	28
88	Natural variability contributes to model–satellite differences in tropical tropospheric warming. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	27
89	Local Radiative Feedbacks Over the Arctic Based on Observed Shortâ€Term Climate Variations. Geophysical Research Letters, 2018, 45, 5761-5770.	1.5	26
90	Broadband water vapor absorption of solar radiation tested using ARM data. Geophysical Research Letters, 1998, 25, 1169-1172.	1.5	24

#	Article	IF	CITATIONS
91	Upward mass fluxes in tropical upper troposphere and lower stratosphere derived from radiative transfer calculations. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 117, 114-122.	1.1	24
92	The impact of lidar detection sensitivity on assessing aerosol direct radiative effects. Geophysical Research Letters, 2017, 44, 9059-9067.	1.5	24
93	The Impact of Cloud Radiative Effects on the Tropical Tropopause Layer Temperatures. Atmosphere, 2018, 9, 377.	1.0	24
94	Emergence of Southern Hemisphere stratospheric circulation changes in response to ozone recovery. Nature Geoscience, 2021, 14, 638-644.	5.4	24
95	Shortwave radiative closure experiment and direct forcing of dust aerosol over northwestern China. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	23
96	Observed changes in Brewer–Dobson circulation for 1980–2018. Environmental Research Letters, 2019, 14, 114026.	2.2	23
97	A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding Unit. Journal of Atmospheric and Oceanic Technology, 2012, 29, 646-652.	0.5	22
98	Using aircraft measurements to estimate the magnitude and uncertainty of the shortwave direct radiative forcing of southern African biomass burning aerosol. Journal of Geophysical Research, 2008, 113, .	3.3	21
99	Bottom up in the tropics. Nature Climate Change, 2013, 3, 957-958.	8.1	21
100	Tropospheric Warming Over The Past Two Decades. Scientific Reports, 2017, 7, 2336.	1.6	21
101	Larger Sensitivity of Precipitation Extremes to Aerosol Than Greenhouse Gas Forcing in CMIP5 Models. Journal of Geophysical Research D: Atmospheres, 2018, 123, 8062-8073.	1.2	21
102	A new approach to modeling aerosol effects on East Asian climate: Parametric uncertainties associated with emissions, cloud microphysics, and their interactions. Journal of Geophysical Research D: Atmospheres, 2015, 120, 8905-8924.	1.2	20
103	Simulated responses of terrestrial aridity to black carbon and sulfate aerosols. Journal of Geophysical Research D: Atmospheres, 2016, 121, 785-794.	1.2	19
104	Cloud effects on radiative heating rate profiles over Darwin using ARM and Aâ€ŧrain radar/lidar observations. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5637-5654.	1.2	18
105	Midlatitude Cirrus Clouds at the SACOL Site: Macrophysical Properties and Large cale Atmospheric States. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2256-2271.	1.2	18
106	Testing Mixed-Phase Cloud Water Vapor Parameterizations with SHEBA/FIRE–ACE Observations. Journals of the Atmospheric Sciences, 2004, 61, 2083-2091.	0.6	17
107	A methodology to retrieve selfâ€consistent aerosol optical properties using common aircraft measurements. Journal of Geophysical Research, 2007, 112,	3.3	17
108	The Brewerâ€Dobson Circulation During the Last Glacial Maximum. Geophysical Research Letters, 2020, 47, e2019GL086271.	1.5	17

#	Article	IF	CITATIONS
109	Quantifying sources of black carbon in western North America using observationally based analysis and an emission tagging technique in the Community Atmosphere Model. Atmospheric Chemistry and Physics, 2015, 15, 12805-12822.	1.9	16
110	Tropical tropopause layer cirrus and its relation to tropopause. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 188, 118-131.	1.1	16
111	Temperature Control of the Variability of Tropical Tropopause Layer Cirrus Clouds. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,062.	1.2	16
112	An improved hydrometeor detection method for millimeter-wavelength cloud radar. Atmospheric Chemistry and Physics, 2017, 17, 9035-9047.	1.9	16
113	The diurnal cycle of clouds and precipitation at the ARM SGP site: Cloud radar observations and simulations from the multiscale modeling framework. Journal of Geophysical Research D: Atmospheres, 2017, 122, 7519-7536.	1.2	15
114	Stratospheric cooling and the troposphere (reply). Nature, 2004, 432, 2-2.	13.7	13
115	Tests and improvements of GCM cloud parameterizations using the CCCMA SCM with the SHEBA data set. Atmospheric Research, 2006, 82, 222-238.	1.8	13
116	An Investigation of Optically Very Thin Ice Clouds from Ground-Based ARM Raman Lidars. Atmosphere, 2018, 9, 445.	1.0	12
117	Stratospheric Ozone in the Last Glacial Maximum. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032929.	1.2	12
118	Differences in Ice Cloud Optical Depth From CALIPSO and Groundâ€Based Raman Lidar at the ARM SGP and TWP Sites. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1755-1778.	1.2	11
119	Improved Convective Ice Microphysics Parameterization in the NCAR CAM Model. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034157.	1.2	11
120	Using Climate Model Simulations to Constrain Observations. Journal of Climate, 2021, 34, 6281-6301.	1.2	11
121	Precipitation Characteristics and Future Changes Over the Southern Slope of Tibetan Plateau Simulated by a Highâ€Resolution Global Nonhydrostatic Model. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033630.	1.2	10
122	Stratosphereâ€Troposphere Exchange of Air Masses and Ozone Concentrations Based on Reanalyses and Observations. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035159.	1.2	10
123	Assessing Global and Local Radiative Feedbacks Based on AGCM Simulations for 1980–2014/2017. Geophysical Research Letters, 2020, 47, e2020GL088063.	1.5	9
124	Understanding the Cold Season Arctic Surface Warming Trend in Recent Decades. Geophysical Research Letters, 2021, 48, e2021GL094878.	1.5	9
125	Aerosol Direct Radiative Effects at the ARM SGP and TWP Sites: Clear Skies. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033663.	1.2	8
126	Evaluation of East Asian Meiyu from CMIP6/AMIP simulations. Climate Dynamics, 2022, 59, 2429-2444.	1.7	8

#	Article	IF	CITATIONS
127	Quasi-Biennial Oscillation and Sudden Stratospheric Warmings during the Last Glacial Maximum. Atmosphere, 2020, 11, 943.	1.0	7
128	Cloud macrophysical properties from KAZR at the SACOL. Chinese Science Bulletin, 2017, 62, 824-835.	0.4	7
129	Retrieval of cirrus particle sizes using a split-window technique: a sensitivity study. Journal of Quantitative Spectroscopy and Radiative Transfer, 2001, 70, 725-736.	1.1	6
130	The diurnally-averaged aerosol direct radiative effect and the use of the daytime-mean and insolation-weighted-mean solar zenith angles. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 257, 107363.	1.1	6
131	Improved Hydrometeor Detection Method: An Application to CloudSat. Earth and Space Science, 2020, 7, e2019EA000900.	1.1	6
132	A robust low-level cloud and clutter discrimination method for ground-based millimeter-wavelength cloud radar. Atmospheric Measurement Techniques, 2021, 14, 1743-1759.	1.2	6
133	Characteristics of Meiyu Seen From Multiple Observational Analyses and Reanalyses. Earth and Space Science, 2021, 8, e2021EA001647.	1.1	6
134	Postâ€Millennium Atmospheric Temperature Trends Observed From Satellites in Stable Orbits. Geophysical Research Letters, 2021, 48, e2021GL093291.	1.5	6
135	Mesoscale Convective Systems Simulated by a Highâ€Resolution Global Nonhydrostatic Model Over the United States and China. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	6
136	Reply to "Comments on â€~A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding Unit'― Journal of Atmospheric and Oceanic Technology, 2013, 30, 1014-1020.	0.5	5
137	Allâ€Sky Aerosol Direct Radiative Effects at the ARM SGP Site. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034933.	1.2	5
138	Parametrizations of Liquid and Ice Clouds' Optical Properties in Operational Numerical Weather Prediction Models. Atmosphere, 2021, 12, 89.	1.0	4
139	Seasonal and Annual Changes of the Regional Tropical Belt in GPS-RO Measurements and Reanalysis Datasets. Journal of Climate, 2020, 33, 4083-4094.	1.2	3
140	The Diurnal Variation of the Aerosol Optical Depth at the ARM SGP Site. Earth and Space Science, 2021, 8, .	1.1	3
141	A case study of microphysical structures and hydrometeor phase in convection using radar Doppler spectra at Darwin, Australia. Geophysical Research Letters, 2017, 44, 7519-7527.	1.5	2
142	Stratosphereâ€Troposphere Exchanges of Air Mass and Ozone Concentration in the Last Glacial Maximum. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	2
143	The Diurnal Cycle of Clouds and Precipitation at the ARM SGP Site: An Atmospheric Stateâ€Based Analysis and Error Decomposition of a Multiscale Modeling Framework Simulation. Journal of Geophysical Research D: Atmospheres, 2017, 122, 13,387.	1.2	1
144	The Effect of Hydrometeors on MSU/AMSU Temperature Observations over the Tropical Ocean. Journal of Atmospheric and Oceanic Technology, 2018, 35, 1141-1150.	0.5	1

#	Article	IF	CITATIONS
145	Finite-difference time-domain solution of light scattering by arbitrarily shaped particles and surfaces. , 2012, , 75-113.		1