Ian C G Weaver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1777664/publications.pdf Version: 2024-02-01

IAN C C WEAVED

#	Article	IF	CITATIONS
1	Epigenetic programming by maternal behavior. Nature Neuroscience, 2004, 7, 847-854.	14.8	5,564
2	Reversal of Maternal Programming of Stress Responses in Adult Offspring through Methyl Supplementation: Altering Epigenetic Marking Later in Life. Journal of Neuroscience, 2005, 25, 11045-11054.	3.6	824
3	Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3480-3485.	7.1	725
4	Maternal Care Associated with Methylation of the Estrogen Receptor-α1b Promoter and Estrogen Receptor-α Expression in the Medial Preoptic Area of Female Offspring. Endocrinology, 2006, 147, 2909-2915.	2.8	629
5	The Transcription Factor Nerve Growth Factor-Inducible Protein A Mediates Epigenetic Programming: Altering Epigenetic Marks by Immediate-Early Genes. Journal of Neuroscience, 2007, 27, 1756-1768.	3.6	472
6	Maternal programming of steroid receptor expression and phenotype through DNA methylation in the rat. Frontiers in Neuroendocrinology, 2005, 26, 139-162.	5.2	313
7	GABAA Receptor Promoter Hypermethylation in Suicide Brain: Implications for the Involvement of Epigenetic Processes. Biological Psychiatry, 2008, 64, 645-652.	1.3	289
8	Early Environmental Regulation of Hippocampal Glucocorticoid Receptor Gene Expression: Characterization of Intracellular Mediators and Potential Genomic Target Sites. Annals of the New York Academy of Sciences, 2004, 1024, 182-212.	3.8	280
9	Natural Variations in Maternal Care Are Associated with Estrogen Receptor $\hat{I}\pm$ Expression and Estrogen Sensitivity in the Medial Preoptic Area. Endocrinology, 2003, 144, 4720-4724.	2.8	266
10	Maternal care, the epigenome and phenotypic differences in behavior. Reproductive Toxicology, 2007, 24, 9-19.	2.9	242
11	Epigenetic Programming by Maternal Behavior and Pharmacological Intervention <i>Nature Versus Nurture: Let's Call The Whole Thing Off</i> . Epigenetics, 2007, 2, 22-28.	2.7	219
12	CBP Histone Acetyltransferase Activity Regulates Embryonic Neural Differentiation in the Normal and Rubinstein-Taybi Syndrome Brain. Developmental Cell, 2010, 18, 114-125.	7.0	160
13	Epigenetic effects of glucocorticoids. Seminars in Fetal and Neonatal Medicine, 2009, 14, 143-150.	2.3	102
14	Early environmental regulation of hippocampal glucocorticoid receptor gene expression: characterization of intracellular mediators and potential genomic target sites. Molecular and Cellular Endocrinology, 2001, 185, 205-218.	3.2	101
15	FROM MATERNAL CARE TO GENE EXPRESSION: DNA METHYLATION AND THE MATERNAL PROGRAMMING OF STRESS RESPONSES. Endocrine Research, 2002, 28, 699-699.	1.2	97
16	Shaping adult phenotypes through early life environments. Birth Defects Research Part C: Embryo Today Reviews, 2009, 87, 314-326.	3.6	96
17	Acetylation-Induced Transcription Is Required for Active DNA Demethylation in Methylation-Silenced Genes. Molecular and Cellular Biology, 2007, 27, 7462-7474.	2.3	84
18	DNA Methyltransferase 1 Knockdown Activates a Replication Stress Checkpoint. Molecular and Cellular Biology, 2006, 26, 7575-7586.	2.3	81

IAN C G WEAVER

#	Article	IF	CITATIONS
19	Maternal Programming of Individual Differences in Defensive Responses in the Rat. Annals of the New York Academy of Sciences, 2004, 1032, 85-103.	3.8	73
20	TAp73 Acts via the bHLH Hey2 to Promote Long-Term Maintenance of Neural Precursors. Current Biology, 2010, 20, 2058-2065.	3.9	73
21	Regional-specific global cytosine methylation and DNA methyltransferase expression in the adult rat hippocampus. Neuroscience Letters, 2008, 440, 49-53.	2.1	70
22	Variations in DNA Methylation Patterns During the Cell Cycle of HeLa Cells. Epigenetics, 2007, 2, 54-65.	2.7	66
23	Maternal behavior regulates long-term hippocampal expression of BAX and apoptosis in the offspring. Journal of Neurochemistry, 2002, 82, 998-1002.	3.9	62
24	Stress and the Emerging Roles of Chromatin Remodeling in Signal Integration and Stable Transmission of Reversible Phenotypes. Frontiers in Behavioral Neuroscience, 2017, 11, 41.	2.0	57
25	The methylated-DNA binding protein MBD2 enhances NGFI-A (egr-1)-mediated transcriptional activation of the glucocorticoid receptor. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130513.	4.0	53
26	Integrating Early Life Experience, Gene Expression, Brain Development, and Emergent Phenotypes. Advances in Genetics, 2014, 86, 277-307.	1.8	52
27	Epigenetic Silencing of TAP1 in Aldefluor+ Breast Cancer Stem Cells Contributes to Their Enhanced Immune Evasion. Stem Cells, 2018, 36, 641-654.	3.2	42
28	S100A10, a novel biomarker in pancreatic ductal adenocarcinoma. Molecular Oncology, 2018, 12, 1895-1916.	4.6	36
29	Retinoic acid and arsenic trioxide induce lasting differentiation and demethylation of target genes in APL cells. Scientific Reports, 2019, 9, 9414.	3.3	30
30	Breast cancer subtype dictates DNA methylation and ALDH1A3-mediated expression of tumor suppressor RARRES1. Oncotarget, 2016, 7, 44096-44112.	1.8	26
31	Presymptomatic Alterations in Amino Acid Metabolism and DNA Methylation in the Cerebellum of a Murine Model of Niemann-Pick Type C Disease. American Journal of Pathology, 2016, 186, 1582-1597.	3.8	23
32	Phosphoglycerate dehydrogenase inhibition induces p-mTOR-independent autophagy and promotes multilineage differentiation in embryonal carcinoma stem-like cells. Cell Death and Disease, 2018, 9, 990.	6.3	22
33	Effects of paternal high-fat diet and rearing environment on maternal investment and development of defensive responses in the offspring. Psychoneuroendocrinology, 2018, 91, 20-30.	2.7	21
34	Cognitive Decline, Cerebral-Spleen Tryptophan Metabolism, Oxidative Stress, Cytokine Production, and Regulation of the Txnip Gene in a Triple Transgenic Mouse Model of Alzheimer Disease. American Journal of Pathology, 2019, 189, 1435-1450.	3.8	21
35	A novel mechanism of plasminogen activation in epithelial and mesenchymal cells. Scientific Reports, 2018, 8, 14091.	3.3	19
36	Decitabine Response in Breast Cancer Requires Efficient Drug Processing and Is Not Limited by Multidrug Resistance. Molecular Cancer Therapeutics, 2020, 19, 1110-1122.	4.1	17

IAN C G WEAVER

#	Article	IF	CITATIONS
37	Effects of Paternal Predation Risk and Rearing Environment on Maternal Investment and Development of Defensive Responses in the Offspring. ENeuro, 2016, 3, ENEURO.0231-16.2016.	1.9	14
38	Epigenetic traces of childhood maltreatment in peripheral blood: a new strategy to explore gene–environment interactions. British Journal of Psychiatry, 2014, 204, 3-5.	2.8	12
39	The effect of background strain on the behavioral phenotypes of the <scp>MDGA2</scp> ^{+/â^'} mouse model of autism spectrum disorder. Genes, Brain and Behavior, 2021, 20, e12696.	2.2	11
40	The essentials of a global index for cognitive function. Translational Neuroscience, 2017, 8, 87-96.	1.4	9
41	Life at the Interface Between a Dynamic Environment and a Fixed Genome: Epigenetic Programming of Stress Responses by Maternal Behavior. , 2009, , 17-39.		9
42	Effects of paternal high-fat diet and maternal rearing environment on the gut microbiota and behavior. Scientific Reports, 2022, 12, .	3.3	9
43	Toward an Understanding of the Dynamic Interdependence of Genes and Environment in the Regulation of Phenotype. , 2011, , 209-243.		5
44	A Canadian perspective on the developmental origins of health and disease: understanding the past as a way forward. Journal of Developmental Origins of Health and Disease, 2019, 10, 1-4.	1.4	4
45	Epigenetic programming by maternal behavior. , 0, .		1
46	HOW DOES EARLY LIFE SOCIAL ENVIRONMENT SCULPT OUR GENES?. Biology of Reproduction, 2007, 77, 64-64.	2.7	1
47	Epigenetic Programming of Stress Responses and Trans-Generational Inheritance Through Natural Variations in Maternal Care. Advances in Neurobiology, 2011, , 87-112.	1.8	1
48	Maternal Programming of Glucocorticoid Receptor Expression and HPA Responses to Stress Through DNA Methylation in the Rat. , 2007, , 595-617.		0
49	Abstract A18: Expression of the tumor suppressor gene RARRES1 in the differentiation hierarchy of breast cancer is regulated by DNA methylation. , 2016, , .		0
50	Abstract 3661: ALDH1A3-inducible RARRES1 is a tumor suppressor in triple-negative breast cancer and is methylated in claudin-low breast cancers. , 2016, , .		0
51	Abstract A07: DNA methylation predicts response of triple-negative breast cancer to all-trans retinoic acid treatment. , 2018, , .		Ο