Csaba Földy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1777645/publications.pdf

Version: 2024-02-01

			279701	3	377752
	34	2,759	23		34
	papers	citations	h-index		g-index
Ī				Ī	
	36	36	36		3871
	all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Autism-linked neuroligin-3 R451C mutation differentially alters hippocampal and cortical synaptic function. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13764-13769.	3.3	296
2	Diversity of Transgenic Mouse Models for Selective Targeting of Midbrain Dopamine Neurons. Neuron, 2015, 85, 429-438.	3.8	285
3	Autism-Associated Neuroligin-3 Mutations Commonly Disrupt Tonic Endocannabinoid Signaling. Neuron, 2013, 78, 498-509.	3.8	247
4	Single-cell RNAseq reveals cell adhesion molecule profiles in electrophysiologically defined neurons. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5222-31.	3.3	162
5	Postsynaptic origin of CB1-dependent tonic inhibition of GABA release at cholecystokinin-positive basket cell to pyramidal cell synapses in the CA1 region of the rat hippocampus. Journal of Physiology, 2007, 578, 233-247.	1.3	159
6	Prevention of Plasticity of Endocannabinoid Signaling Inhibits Persistent Limbic Hyperexcitability Caused by Developmental Seizures. Journal of Neuroscience, 2007, 27, 46-58.	1.7	147
7	Single-Cell mRNA Profiling Reveals Cell-Type-Specific Expression of Neurexin Isoforms. Neuron, 2015, 87, 326-340.	3.8	144
8	\hat{l}^2 -Neurexins Control Neural Circuits by Regulating Synaptic Endocannabinoid Signaling. Cell, 2015, 162, 593-606.	13.5	123
9	Presynaptic, Activity-Dependent Modulation of Cannabinoid Type 1 Receptor-Mediated Inhibition of GABA Release. Journal of Neuroscience, 2006, 26, 1465-1469.	1.7	121
10	Cell type–specific gating of perisomatic inhibition by cholecystokinin. Nature Neuroscience, 2007, 10, 1128-1130.	7.1	116
11	Distinct circuit-dependent functions of presynaptic neurexin-3 at GABAergic and glutamatergic synapses. Nature Neuroscience, 2015, 18, 997-1007.	7.1	109
12	Chronic Stress Induces Activity, Synaptic, and Transcriptional Remodeling of the Lateral Habenula Associated with Deficits in Motivated Behaviors. Neuron, 2019, 104, 899-915.e8.	3.8	103
13	Distinct Endocannabinoid Control of GABA Release at Perisomatic and Dendritic Synapses in the Hippocampus. Journal of Neuroscience, 2010, 30, 7993-8000.	1.7	98
14	Regulation of fast-spiking basket cell synapses by the chloride channel CIC-2. Nature Neuroscience, 2010, 13, 1047-1049.	7.1	84
15	Amygdala-Midbrain Connections Modulate Appetitive and Aversive Learning. Neuron, 2020, 106, 1026-1043.e9.	3.8	70
16	FASN-Dependent Lipid Metabolism Links Neurogenic Stem/Progenitor Cell Activity to Learning and Memory Deficits. Cell Stem Cell, 2020, 27, 98-109.e11.	5.2	62
17	Long- and short-term plasticity at mossy fiber synapses on mossy cells in the rat dentate gyrus. Hippocampus, 2005, 15, 691-696.	0.9	54
18	Cell-Type-Specific CCK2 Receptor Signaling Underlies the Cholecystokinin-Mediated Selective Excitation of Hippocampal Parvalbumin-Positive Fast-Spiking Basket Cells. Journal of Neuroscience, 2011, 31, 10993-11002.	1.7	53

#	Article	IF	CITATIONS
19	Single-Cell RNA-Seq Reveals Developmental Origins and Ontogenetic Stability of Neurexin Alternative Splicing Profiles. Cell Reports, 2019, 27, 3752-3759.e4.	2.9	46
20	Transcriptional and morphological profiling of parvalbumin interneuron subpopulations in the mouse hippocampus. Nature Communications, 2021, 12, 108.	5.8	40
21	Adolescence is a sensitive period for prefrontal microglia to act on cognitive development. Science Advances, 2022, 8, eabi6672.	4.7	40
22	Singleâ€cell RNAâ€Seq characterization of anatomically identified OLM interneurons in different transgenic mouse lines. European Journal of Neuroscience, 2019, 50, 3750-3771.	1.2	38
23	Diversity beyond variance: modulation of firing rates and network coherence by GABAergic subpopulations. European Journal of Neuroscience, 2004, 19, 119-130.	1.2	29
24	Cell-Type-Specific Modulation of Feedback Inhibition by Serotonin in the Hippocampus. Journal of Neuroscience, 2011, 31, 8464-8475.	1.7	27
25	Structure of cortical microcircuit theory. Journal of Physiology, 2005, 562, 47-54.	1.3	17
26	Neurexin-3 defines synapse- and sex-dependent diversity of GABAergic inhibition in ventral subiculum. Cell Reports, 2021, 37, 110098.	2.9	17
27	Deep Survey of GABAergic Interneurons: Emerging Insights From Gene-Isoform Transcriptomics. Frontiers in Molecular Neuroscience, 2019, 12, 115.	1.4	14
28	C1QL3 promotes cellâ€cell adhesion by mediating complex formation between ADGRB3/BAI3 and neuronal pentraxins. FASEB Journal, 2021, 35, e21194.	0.2	14
29	Functional specification of CCK+ interneurons by alternative isoforms of Kv4.3 auxiliary subunits. ELife, 2020, 9, .	2.8	12
30	Recurrent rewiring of the adult hippocampal mossy fiber system by a single transcriptional regulator, Id2. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	8
31	Circuit formation in the adult brain. European Journal of Neuroscience, 2022, 56, 4187-4213.	1.2	7
32	Broad Ultrastructural and Transcriptomic Changes Underlie the Multinucleated Giant Hemocyte Mediated Innate Immune Response against Parasitoids. Journal of Innate Immunity, 2022, 14, 335-354.	1.8	5
33	Sensor for Stiffness Measurements Within the Adult Rat Hippocampus. IEEE Sensors Journal, 2008, 8, 1894-1899.	2.4	4
34	Transcriptomically-guided pharmacological experiments in neocortical and hippocampal NPY-positive GABAergic interneurons. ENeuro, 2022, , ENEURO.0005-22.2022.	0.9	2