Enrico Francia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1777295/publications.pdf

Version: 2024-02-01

67 papers

4,800 citations

30 h-index 65 g-index

70 all docs

70 docs citations

times ranked

70

5443 citing authors

#	Article	IF	CITATIONS
1	Plant Biostimulants in Sustainable Potato Production: an Overview. Potato Research, 2022, 65, 83-104.	2.7	17
2	Agronomic Comparisons of Heirloom and Modern Processing Tomato Genotypes Cultivated in Organic and Conventional Farming Systems. Agronomy, 2021, 11, 349.	3.0	4
3	Genetic and Management Effects on Barley Yield and Phenology in the Mediterranean Basin. Frontiers in Plant Science, 2021, 12, 655406.	3.6	12
4	Effects of Biostimulants on the Chemical Composition of Essential Oil and Hydrosol of Lavandin (Lavandula x intermedia Emeric ex Loisel.) Cultivated in Tuscan-Emilian Apennines. Molecules, 2021, 26, 6157.	3.8	10
5	Extensive allele mining discovers novel genetic diversity in the loci controlling frost tolerance in barley. Theoretical and Applied Genetics, 2021 , , 1 .	3.6	9
6	Influence of CNV on transcript levels of HvCBF genes at Fr-H2 locus revealed by resequencing in resistant barley cv. †Nure†and expression analysis. Plant Science, 2020, 290, 110305.	3.6	5
7	In Silico Identification of MYB and bHLH Families Reveals Candidate Transcription Factors for Secondary Metabolic Pathways in Cannabis sativa L Plants, 2020, 9, 1540.	3.5	14
8	Characterization of Celiac Disease-Related Epitopes and Gluten Fractions, and Identification of Associated Loci in Durum Wheat. Agronomy, 2020, 10, 1231.	3.0	6
9	Interspecific rootstock can enhance yield of processing tomatoes (<i>Solanum lycopersicum</i> L.) in organic farming. Biological Agriculture and Horticulture, 2020, 36, 156-171.	1.0	2
10	Influence of environmental and genetic factors on content of toxic and immunogenic wheat gluten peptides. European Journal of Agronomy, 2020, 118, 126091.	4.1	10
11	Bioplastic Film from Black Soldier Fly Prepupae Proteins Used as Mulch: Preliminary Results. Agronomy, 2020, 10, 933.	3.0	12
12	Using Digestate and Biochar as Fertilizers to Improve Processing Tomato Production Sustainability. Agronomy, 2020, 10, 138.	3.0	53
13	Changes in yield components, morphological, physiological and fruit quality traits in processing tomato cultivated in Italy since the 1930's. Scientia Horticulturae, 2019, 257, 108726.	3.6	32
14	Nitrogen Fertilizers Shape the Composition and Predicted Functions of the Microbiota of Field-Grown Tomato Plants. Phytobiomes Journal, 2019, 3, 315-325.	2.7	26
15	Valorization of Vineyard By-Products to Obtain Composted Digestate and Biochar Suitable for Nursery Grapevine (Vitis vinifera L.) Production. Agronomy, 2019, 9, 420.	3.0	27
16	Blossom end-rot in tomato (Solanum lycopersicum L.): A multi-disciplinary overview of inducing factors and control strategies. Scientia Horticulturae, 2019, 249, 49-58.	3.6	65
17	Use of black soldier fly (Hermetia illucens (L.), Diptera: Stratiomyidae) larvae processing residue in peat-based growing media. Waste Management, 2019, 95, 278-288.	7.4	88
18	Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Rhizobacteria Avoid Processing Tomato Leaf Damage during Chilling Stress. Agronomy, 2019, 9, 299.	3.0	32

#	Article	IF	Citations
19	The impact of climate change on barley yield in the Mediterranean basin. European Journal of Agronomy, 2019, 106, 1-11.	4.1	93
20	Carbon footprint and energetic analysis of tomato production in the organic vs the conventional cropping systems in Southern Italy. Journal of Cleaner Production, 2019, 220, 836-845.	9.3	49
21	Technological Quality and Nutritional Value of Two Durum Wheat Varieties Depend on Both Genetic and Environmental Factors. Journal of Agricultural and Food Chemistry, 2019, 67, 2384-2395.	5.2	29
22	Interaction of Tomato Genotypes and Arbuscular Mycorrhizal Fungi under Reduced Irrigation. Horticulturae, 2019, 5, 79.	2.8	13
23	A Meta-Analysis of Comparative Transcriptomic Data Reveals a Set of Key Genes Involved in the Tolerance to Abiotic Stresses in Rice. International Journal of Molecular Sciences, 2019, 20, 5662.	4.1	24
24	Combined Effect of Cadmium and Lead on Durum Wheat. International Journal of Molecular Sciences, 2019, 20, 5891.	4.1	21
25	Effects of solid and liquid digestate for hydroponic baby leaf lettuce (Lactuca sativa L.) cultivation. Scientia Horticulturae, 2019, 244, 172-181.	3.6	66
26	Physiological responses to chilling in cultivars of processing tomato released and cultivated over the past decades in Southern Europe. Scientia Horticulturae, 2018, 231, 118-125.	3.6	26
27	<i>Panicum</i> spikelets from the Early Holocene Takarkori rockshelter (SW Libya): Archaeo-molecular and -botanical investigations. Plant Biosystems, 2018, 152, 1-13.	1.6	13
28	Testing the influence of digestate from biogas on growth and volatile compounds of basil (Ocimum) Tj ETQq0 (Medicinal and Aromatic Plants, 2018, 11, 18-26.	0 0 rgBT /O 1.5	verlock 10 Tf 20
29	Tracking celiac disease-triggering peptides and whole wheat flour quality as function of germination kinetics. Food Research International, 2018, 112, 345-352.	6.2	6
30	Transcriptome profiling of short-term response to chilling stress in tolerant and sensitive Oryza sativa ssp. Japonica seedlings. Functional and Integrative Genomics, 2018, 18, 627-644.	3.5	34
31	Biomass production and dry matter partitioning of processing tomato under organic vs conventional cropping systems in a Mediterranean environment. Scientia Horticulturae, 2017, 224, 163-170.	3.6	52
32	Marker characterization of vernalization and low-temperature tolerance loci in barley genotypes adapted to semi-arid environments. Czech Journal of Genetics and Plant Breeding, 2016, 52, 157-162.	0.8	4
33	Agronomic and molecular evaluation of cocksfoot and tall fescue cultivars for adaptation to an Algerian drought-prone environment. Euphytica, 2016, 212, 371-386.	1.2	8
34	Evaluation of Cucurbita pepo germplasm for staminate flower production and adaptation to the frozen food industry. Scientia Horticulturae, 2016, 213, 321-330.	3.6	3
35	Copy number variation at the HvCBF4–HvCBF2 genomic segment is a major component of frost resistance in barley. Plant Molecular Biology, 2016, 92, 161-175.	3.9	45
36	Physiological responses of processing tomato in organic and conventional Mediterranean cropping systems. Scientia Horticulturae, 2015, 190, 161-172.	3.6	39

#	Article	IF	Citations
37	CNV and Structural Variation in Plants: Prospects of NGS Approaches. , 2015, , 211-232.		8
38	The barley Frost resistance-H2 locus. Functional and Integrative Genomics, 2014, 14, 85-100.	3. 5	19
39	Candidate gene expression profiling in two contrasting tomato cultivars under chilling stress. Biologia Plantarum, 2014, 58, 283-295.	1.9	26
40	QTLs for barley yield adaptation to Mediterranean environments in the †Nure†MÂ׆Tremois†biparer population. Euphytica, 2014, 197, 73-86.	ntal 1.2	74
41	Genome-wide association mapping of frost tolerance in barley (Hordeum vulgare L.). BMC Genomics, 2013, 14, 424.	2.8	101
42	Determinants of barley grain yield in drought-prone Mediterranean environments. Italian Journal of Agronomy, 2013, 8, 1.	1.0	17
43	QTLs for resistance to the false brome rust Puccinia brachypodii in the model grass Brachypodium distachyon L Genome, 2012, 55, 152-163.	2.0	28
44	Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nature Genetics, 2012, 44, 1388-1392.	21.4	477
45	Determinants of barley grain yield in a wide range of Mediterranean environments. Field Crops Research, 2011, 120, 169-178.	5.1	7 3
46	Inside the CBF locus in Poaceae. Plant Science, 2011, 180, 39-45.	3.6	60
47	Diversity in the Response to Low Temperature in Representative Barley Genotypes Cultivated in Europe. Crop Science, 2011, 51, 2759-2779.	1.8	42
48	Epigenetic chromatin modifiers in barley: IV. The study of barley Polycomb group (PcG) genes during seed development and in response to external ABA. BMC Plant Biology, 2010, 10, 73.	3.6	63
49	Markerâ€assisted characterization of frost tolerance in barley (<i>Hordeum vulgare</i> L.). Plant Breeding, 2009, 128, 381-386.	1.9	29
50	QTL alleles from a winter feed type can improve malting quality in barley. Plant Breeding, 2009, 128, 598-605.	1.9	19
51	Epigenetic chromatin modifiers in barley: I. Cloning, mapping and expression analysis of the plant specific <i>HD2</i> family of histone deacetylases from barley, during seed development and after hormonal treatment. Physiologia Plantarum, 2009, 136, 358-368.	5.2	65
52	Gene expression in grapevine cultivars in response to Bois Noir phytoplasma infection. Plant Science, 2009, 176, 792-804.	3.6	94
53	Barley adaptation and improvement in the Mediterranean basin. Plant Breeding, 2008, 127, 554-560.	1.9	40
54	Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Research, 2008, 105, 1-14.	5.1	1,122

#	Article	IF	CITATIONS
55	Expression levels of barley <i>Cbf</i> genes at the <i>Frost resistance</i> â€ <i>H2</i> locus are dependent upon alleles at <i>Frâ€H1</i> and <i>Frâ€H2</i> Plant Journal, 2007, 51, 308-321.	5.7	121
56	Haplotype structure around the nud locus in barley and its association with resistance to leaf stripe (Pyrenophora graminea). Plant Breeding, 2007, 126, 24-29.	1.9	2
57	Fine mapping of a HvCBF gene cluster at the frost resistance locus Fr-H2 in barley. Theoretical and Applied Genetics, 2007, 115, 1083-1091.	3.6	145
58	Dual-purpose barley and oat in a Mediterranean environment. Field Crops Research, 2006, 99, 158-166.	5.1	48
59	Mapping regulatory genes as candidates for cold and drought stress tolerance in barley. Theoretical and Applied Genetics, 2006, 112, 445-454.	3.6	128
60	Marker assisted selection in crop plants. Plant Cell, Tissue and Organ Culture, 2005, 82, 317-342.	2.3	176
61	Molecular and Structural Characterization of Barley Vernalization Genes. Plant Molecular Biology, 2005, 59, 449-467.	3.9	258
62	Development of PCR-based markers on chromosome 5H for assisted selection of frost-tolerant genotypes in barley. Molecular Breeding, 2004, 14, 265-273.	2.1	21
63	Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley. Plant Molecular Biology, 2004, 55, 399-416.	3.9	273
64	Two loci on chromosome 5H determine low-temperature tolerance in a  Nure' (winter) ×  Tremois' (spring) barley map. Theoretical and Applied Genetics, 2004, 108, 670-680.	3.6	199
65	Isolate-specific QTLs of resistance to leaf stripe (Pyrenophora graminea) in the 'Steptoe' × 'Morex' spring barley cross. Theoretical and Applied Genetics, 2003, 106, 668-675.	3.6	68
66	Genomic regions determining resistance to leaf stripe (Pyrenophora graminea) in barley. Genome, 2002, 45, 460-466.	2.0	24
67	Biostimulants and cherry rootstock increased tomato fruit yield and quality in sustainable farming systems. Italian Journal of Agronomy, 0, , .	1.0	5