Peter Läderach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1777079/publications.pdf

Version: 2024-02-01

71 papers

4,580 citations

35 h-index 65 g-index

72 all docs 72 docs citations

times ranked

72

4098 citing authors

#	Article	IF	CITATIONS
1	What is the importance of climate research? An innovative web-based approach to assess the influence and reach of climate research programs. Environmental Science and Policy, 2022, 133, 115-126.	2.4	3
2	Barriers to Implementing Climate Policies in Agriculture: A Case Study From Viet Nam. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	11
3	Transforming Food Systems in Africa under Climate Change Pressure: Role of Climate-Smart Agriculture. Sustainability, 2021, 13, 4305.	1.6	40
4	Food systems for peace and security in a climate crisis. Lancet Planetary Health, The, 2021, 5, e249-e250.	5.1	6
5	Unravelling drivers of high variability of on-farm cocoa yields across environmental gradients in Ghana. Agricultural Systems, 2021, 193, 103214.	3.2	13
6	Climate finance and peaceâ€"tackling the climate and humanitarian crisis. Lancet Planetary Health, The, 2021, 5, e856-e858.	5.1	8
7	The importance of food systems in a climate crisis for peace and security in the Sahel. International Review of the Red Cross, 2021, 103, 995-1028.	0.3	3
8	Assessing the ecological vulnerability of forest landscape to agricultural frontier expansion in the Central Highlands of Vietnam. International Journal of Applied Earth Observation and Geoinformation, 2020, 84, 101958.	1.4	31
9	Impacts of smallholder agricultural adaptation on food security: evidence from Africa, Asia, and Central America. Food Security, 2020, 12, 21-35.	2.4	8
10	Assessing the accuracy and robustness of a process-based model for coffee agroforestry systems in Central America. Agroforestry Systems, 2020, 94, 2033-2051.	0.9	13
11	Creating positive synergies between risk management and transfer to accelerate food system climate resilience. Climatic Change, 2020, 161, 465-478.	1.7	9
12	Variations in yield gaps of smallholder cocoa systems and the main determining factors along a climate gradient in Ghana. Agricultural Systems, 2020, 181, 102812.	3.2	31
13	Determinants of Adoption of Climate-Smart Agriculture Technologies at Farm Plot Level: An Assessment from Southern Tanzania., 2020,, 1647-1660.		1
14	Interactive effects of altitude, microclimate and shading system on coffee leaf rust. Journal of Plant Interactions, 2019, 14, 407-415.	1.0	22
15	Incentives and the Diffusion of Agricultural Knowledge: Experimental Evidence from Northern Uganda. American Journal of Agricultural Economics, 2019, 101, 1164-1180.	2.4	32
16	Reviewing Vietnam's Nationally Determined Contribution: A New Perspective Using the Marginal Cost of Abatement. Frontiers in Sustainable Food Systems, 2019, 3, .	1.8	11
17	Recommendation domains to scale out climate change adaptation in cocoa production in Ghana. Climate Services, 2019, 16, 100123.	1.0	29
18	Why could the coffee crop endure climate change and global warming to a greater extent than previously estimated?. Climatic Change, 2019, 152, 167-178.	1.7	111

#	Article	IF	CITATIONS
19	Vulnerability of the agricultural sector to climate change: The development of a pan-tropical Climate Risk Vulnerability Assessment to inform sub-national decision making. PLoS ONE, 2019, 14, e0213641.	1.1	97
20	GeoFarmer: A monitoring and feedback system for agricultural development projects. Computers and Electronics in Agriculture, 2019, 158, 109-121.	3.7	58
21	Household Welfare Effects of Stress-Tolerant Varieties in Northern Uganda. , 2019, , 175-186.		1
22	Exploring adaptation strategies of coffee production to climate change using a process-based model. Ecological Modelling, 2018, 371, 76-89.	1.2	78
23	Local and regional drivers of the African coffee white stem borer (<i>Monochamus leuconotus</i>) in Uganda. Agricultural and Forest Entomology, 2018, 20, 514-522.	0.7	8
24	Farm-level and community aggregate economic impacts of adopting climate smart agricultural practices in three mega environments. PLoS ONE, 2018, 13, e0207700.	1.1	22
25	Characterization of cocoa production, income diversification and shade tree management along a climate gradient in Ghana. PLoS ONE, 2018, 13, e0195777.	1.1	63
26	Opportunities for sustainable intensification of coffee agro-ecosystems along an altitudinal gradient on Mt. Elgon, Uganda. Agriculture, Ecosystems and Environment, 2018, 263, 31-40.	2.5	40
27	Diversification and intensification of agricultural adaptation from global to local scales. PLoS ONE, 2018, 13, e0196392.	1.1	34
28	Determinants of Adoption of Climate-Smart Agriculture Technologies at Farm Plot Level: An Assessment from Southern Tanzania., 2018, , 1-15.		14
29	Facilitating Change for Climate-Smart Agriculture through Science-Policy Engagement. Sustainability, 2018, 10, 2616.	1.6	37
30	Climate smart agriculture rapid appraisal (CSA-RA): A tool for prioritizing context-specific climate smart agriculture technologies. Agricultural Systems, 2017, 151, 192-203.	3.2	107
31	Assessing high-impact spots of climate change: spatial yield simulations with Decision Support System for Agrotechnology Transfer (DSSAT) model. Mitigation and Adaptation Strategies for Global Change, 2017, 22, 743-760.	1.0	17
32	From site-level to regional adaptation planning for tropical commodities: cocoa in West Africa. Mitigation and Adaptation Strategies for Global Change, 2017, 22, 903-927.	1.0	40
33	Climate change adaptation of coffee production in space and time. Climatic Change, 2017, 141, 47-62.	1.7	179
34	Climate change, ecosystems and smallholder agriculture in Central America: an introduction to the special issue. Climatic Change, 2017, 141, 1-12.	1.7	47
35	Smallholder farmers' attitudes and determinants of adaptation to climate risks in East Africa. Climate Risk Management, 2017, 16, 234-245.	1.6	137
36	Regional modeling of climate change impacts on smallholder agriculture and ecosystems in Central America. Climatic Change, 2017, 141, 29-45.	1.7	70

#	Article	IF	CITATIONS
37	Coupling of pollination services and coffee suitability under climate change. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10438-10442.	3.3	58
38	Survey data of intra-household decision making and smallholder agricultural production in Northern Uganda and Southern Tanzania. Data in Brief, 2017, 14, 302-306.	0.5	15
39	Application of thermography for monitoring stomatal conductance of Coffea arabica under different shading systems. Science of the Total Environment, 2017, 609, 755-763.	3.9	29
40	Mapping climate change adaptive capacity and vulnerability of smallholder agricultural livelihoods in Central America: ranking and descriptive approaches to support adaptation strategies. Climatic Change, 2017, 141, 123-137.	1.7	71
41	Learning through monitoring, evaluation and adaptations of the " <i>Outcome Harvesting</i> ―tool. Cahiers Agricultures, 2017, 26, 65004.	0.4	6
42	Climate friendliness of cocoa agroforests is compatible with productivity increase. Mitigation and Adaptation Strategies for Global Change, 2016, 21, 67-80.	1.0	39
43	Towards a Collaborative Research: A Case Study on Linking Science to Farmers' Perceptions and Knowledge on Arabica Coffee Pests and Diseases and Its Management. PLoS ONE, 2016, 11, e0159392.	1.1	32
44	Climate-Smart Livestock Systems: An Assessment of Carbon Stocks and GHG Emissions in Nicaragua. PLoS ONE, 2016, 11, e0167949.	1.1	38
45	Vulnerability to climate change of cocoa in West Africa: Patterns, opportunities and limits to adaptation. Science of the Total Environment, 2016, 556, 231-241.	3.9	235
46	Projected Shifts in Coffea arabica Suitability among Major Global Producing Regions Due to Climate Change. PLoS ONE, 2015, 10, e0124155.	1.1	214
47	Multiclass Classification of Agro-Ecological Zones for Arabica Coffee: An Improved Understanding of the Impacts of Climate Change. PLoS ONE, 2015, 10, e0140490.	1.1	83
48	A bitter cup: climate change profile of global production of Arabica and Robusta coffee. Climatic Change, 2015, 129, 89-101.	1.7	346
49	The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Security, 2015, 7, 303-321.	2.4	388
50	Historical climate trends, deforestation, and maize and bean yields in Nicaragua. Agricultural and Forest Meteorology, 2015, 200, 270-281.	1.9	64
51	Winner or loser of climate change? A modeling study of current and future climatic suitability of Arabica coffee in Indonesia. Regional Environmental Change, 2015, 15, 1473-1482.	1.4	52
52	Climate change adaptation, mitigation and livelihood benefits in coffee production: where are the synergies?. Mitigation and Adaptation Strategies for Global Change, 2014, 19, 1119-1137.	1.0	87
53	Implications of a changing climate on food security and smallholders' livelihoods in Bogotá, Colombia. Mitigation and Adaptation Strategies for Global Change, 2014, 19, 161-176.	1.0	24
54	Shade Coffee: Update on a Disappearing Refuge for Biodiversity. BioScience, 2014, 64, 416-428.	2.2	265

#	Article	IF	CITATIONS
55	Carbon footprints and carbon stocks reveal climate-friendly coffee production. Agronomy for Sustainable Development, 2014, 34, 887-897.	2.2	51
56	An Integrated Framework for Assessing Vulnerability to Climate Change and Developing Adaptation Strategies for Coffee Growing Families in Mesoamerica. PLoS ONE, 2014, 9, e88463.	1.1	132
57	Recommendations for the Regionalizing of Coffee Cultivation in Colombia: A Methodological Proposal Based on Agro-Climatic Indices. PLoS ONE, 2014, 9, e113510.	1.1	22
58	Predicting the future climatic suitability for cocoa farming of the world's leading producer countries, Ghana and Cà te d'lvoire. Climatic Change, 2013, 119, 841-854.	1.7	173
59	Empirical approaches for assessing impacts of climate change on agriculture: The EcoCrop model and a case study with grain sorghum. Agricultural and Forest Meteorology, 2013, 170, 67-78.	1.9	115
60	The Potential of Latin American Coffee Production Systems to Mitigate Climate Change. Climate Change Management, 2013, , 655-679.	0.6	0
61	Addressing uncertainty in adaptation planning for agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8357-8362.	3.3	212
62	Addressing Adaptation to Support Disaster Risk Reduction: A Framework for Supply Chain Inclusive Adaptation to Climate Change. Climate Change Management, 2013, , 513-533.	0.6	7
63	Weather Indices for Designing Micro-Insurance Products for Small-Holder Farmers in the Tropics. PLoS ONE, 2012, 7, e38281.	1.1	5
64	Improving Index-Based Drought Insurance in Varying Topography: Evaluating Basis Risk Based on Perceptions of Nicaraguan Hillside Farmers. PLoS ONE, 2012, 7, e51412.	1.1	6
65	Predicted Impact of Climate Change on Coffee Supply Chains. Climate Change Management, 2011, , 703-723.	0.6	36
66	Crop management based on field observations: Case studies in sugarcane and coffee. Agricultural Systems, 2011, 104, 755-769.	3.2	27
67	Systematic agronomic farm management for improved coffee quality. Field Crops Research, 2011, 120, 321-329.	2.3	44
68	Regional relationships between inherent coffee quality and growing environment for denomination of origin labels in Nariño and Cauca, Colombia. Food Policy, 2011, 36, 783-794.	2.8	41
69	A Review of Ecosystem Services, Farmer Livelihoods, and Value Chains in Shade Coffee Agroecosystems. Integrated Science & Technology Program, 2011, , 141-208.	0.7	50
70	Rainfall index insurance to help smallholder farmers manage drought risk. Climate and Development, 2010, 2, 233-247.	2.2	21
71	Towards a climate change adaptation strategy for coffee communities and ecosystems in the Sierra Madre de Chiapas, Mexico. Mitigation and Adaptation Strategies for Global Change, 2009, 14, 605-625.	1.0	158