
## Jeong-Won Yoon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1777036/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Intermetallic compound layer growth at the interface between Sn–Cu–Ni solder and Cu substrate.<br>Journal of Alloys and Compounds, 2004, 381, 151-157.                                                                    | 5.5 | 99        |
| 2  | Growth of an intermetallic compound layer with Sn-3.5Ag-5Bi on Cu and Ni-P/Cu during aging treatment. Journal of Electronic Materials, 2003, 32, 1195-1202.                                                               | 2.2 | 83        |
| 3  | Comparative Study of ENIG and ENEPIG as Surface Finishes for a Sn-Ag-Cu Solder Joint. Journal of Electronic Materials, 2011, 40, 1950-1955.                                                                               | 2.2 | 82        |
| 4  | Interfacial reactions between Sn–0.4Cu solder and Cu substrate with or without ENIG plating layer during reflow reaction. Journal of Alloys and Compounds, 2005, 396, 122-127.                                            | 5.5 | 79        |
| 5  | Interfacial reactions and shear strengths between Sn-Ag-based Pb-free solder balls and Au/EN/Cu<br>metallization. Journal of Electronic Materials, 2004, 33, 1182-1189.                                                   | 2.2 | 78        |
| 6  | Reliability investigation and interfacial reaction of ball-grid-array packages using the lead-free Sn-Cu<br>solder. Journal of Electronic Materials, 2004, 33, 1190-1199.                                                 | 2.2 | 74        |
| 7  | IMC Growth and Shear Strength of Sn-Ag-Bi-In/Au/Ni/Cu BGA Joints During Aging. Materials<br>Transactions, 2004, 45, 727-733.                                                                                              | 1.2 | 71        |
| 8  | Sequential interfacial intermetallic compound formation of Cu6Sn5 and Ni3Sn4 between Sn–Ag–Cu<br>solder and ENEPIG substrate during a reflow process. Journal of Alloys and Compounds, 2011, 509,<br>L153-L156.           | 5.5 | 70        |
| 9  | Interfacial Reactions Between Sn-58 mass%Bi Eutectic Solder and (Cu, Electroless Ni-P/Cu) Substrate.<br>Materials Transactions, 2002, 43, 1821-1826.                                                                      | 1.2 | 66        |
| 10 | Growth kinetics of Ni3Sn4 and Ni3P layer between Sn–3.5Ag solder and electroless Ni–P substrate.<br>Journal of Alloys and Compounds, 2004, 376, 105-110.                                                                  | 5.5 | 61        |
| 11 | Effect of isothermal aging on intermetallic compound layer growth at the interface between Sn-3.5Ag-0.75Cu solder and Cu substrate. Journal of Materials Science, 2004, 39, 4211-4217.                                    | 3.7 | 58        |
| 12 | Interfacial reactions and shear strength on Cu and electrolytic Au/Ni metallization with Sn-Zn<br>solder. Journal of Materials Research, 2006, 21, 1590-1599.                                                             | 2.6 | 58        |
| 13 | Cu–Sn and Ni–Sn transient liquid phase bonding for die-attach technology applications in<br>high-temperature power electronics packaging. Journal of Materials Science: Materials in Electronics,<br>2017, 28, 7827-7833. | 2.2 | 57        |
| 14 | Evaluation of Electrochemical Migration on Flexible Printed Circuit Boards with Different Surface<br>Finishes. Journal of Electronic Materials, 2009, 38, 902-907.                                                        | 2.2 | 45        |
| 15 | Interfacial reaction and intermetallic compound formation of Sn–1Ag/ENIG and Sn–1Ag/ENEPIG solder<br>joints. Journal of Alloys and Compounds, 2015, 627, 276-280.                                                         | 5.5 | 42        |
| 16 | Title is missing!. Journal of Materials Science: Materials in Electronics, 2003, 14, 487-493.                                                                                                                             | 2.2 | 41        |
| 17 | Cu-Sn Intermetallic Compound Joints for High-Temperature Power Electronics Applications. Journal of Electronic Materials, 2018, 47, 430-435.                                                                              | 2.2 | 41        |
| 18 | Effect of immersion Ag surface finish on interfacial reaction and mechanical reliability of<br>Sn–3.5Ag–0.7Cu solder joint. Journal of Alloys and Compounds, 2008, 458, 200-207.                                          | 5.5 | 40        |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Effect of surface finish on interfacial reactions of Cu/Sn–Ag–Cu/Cu(ENIG) sandwich solder joints.<br>Journal of Alloys and Compounds, 2008, 448, 177-184.                                                          | 5.5 | 39        |
| 20 | Interfacial reactions and mechanical strength of Sn-3.0Ag-0.5Cu/Ni/Cu and Au-20Sn/Ni/Cu solder joints for power electronics applications. Microelectronics Reliability, 2017, 71, 119-125.                         | 1.7 | 37        |
| 21 | Die-attach for power devices using the Ag sintering process: Interfacial microstructure and mechanical strength. Metals and Materials International, 2017, 23, 958-963.                                            | 3.4 | 34        |
| 22 | Solid-state interfacial reactions between Sn–3.5Ag–0.7Cu solder and electroless Ni-immersion Au<br>substrate during high temperature storage test. Journal of Alloys and Compounds, 2007, 439, 91-96.              | 5.5 | 33        |
| 23 | Effects of isothermal aging and temperature–humidity treatment of substrate on joint reliability of<br>Sn–3.0Ag–0.5Cu/OSP-finished Cu CSP solder joint. Microelectronics Reliability, 2008, 48, 1864-1874.         | 1.7 | 33        |
| 24 | Liquid-state and solid-state interfacial reactions of fluxless-bonded Au–20Sn/ENIG solder joint.<br>Journal of Alloys and Compounds, 2009, 469, 108-115.                                                           | 5.5 | 32        |
| 25 | Effect of multiple reflows on interfacial reaction and shear strength of Sn–Ag electroplated solder bumps for flip chip package. Microelectronic Engineering, 2010, 87, 517-521.                                   | 2.4 | 32        |
| 26 | Au–Sn flip-chip solder bump for microelectronic and optoelectronic applications. Microsystem<br>Technologies, 2007, 13, 1463-1469.                                                                                 | 2.0 | 31        |
| 27 | Interfacial reactions and joint strength of Sn–37Pb and Sn–3.5Ag solders with immersion Ag-plated Cu<br>substrate during aging at 150 °C. Journal of Materials Research, 2006, 21, 3196-3204.                      | 2.6 | 30        |
| 28 | Reliability analysis of Au–Sn flip-chip solder bump fabricated by co-electroplating. Journal of<br>Materials Research, 2007, 22, 1219-1229.                                                                        | 2.6 | 30        |
| 29 | Effect of Sintering Conditions on the Mechanical Strength of Cu-Sintered Joints for High-Power Applications. Materials, 2018, 11, 2105.                                                                            | 2.9 | 30        |
| 30 | Microstructure, Electrical Properties, and Electrochemical Migration of a Directly Printed Ag<br>Pattern. Journal of Electronic Materials, 2011, 40, 35-41.                                                        | 2.2 | 29        |
| 31 | Control of interfacial reaction layers formed in Sn–3.5Ag–0.7Cu/electroless Ni–P solder joints.<br>Scripta Materialia, 2009, 60, 257-260.                                                                          | 5.2 | 27        |
| 32 | Characterization of ternary Ni2SnP layer in Sn–3.5Ag–0.7Cu/electroless Ni (P) solder joint. Scripta<br>Materialia, 2010, 63, 1108-1111.                                                                            | 5.2 | 24        |
| 33 | Comparison of Interfacial Stability of Pb-Free Solders (Sn—3.5Ag, Sn—3.5Ag—0.7Cu, and Sn—0.7Cu) on<br>ENIG-Plated Cu During Aging. IEEE Transactions on Components and Packaging Technologies, 2010, 33,<br>64-70. | 1.3 | 23        |
| 34 | Interfacial reaction between Au–Sn solder and Au/Ni-metallized Kovar. Journal of Materials Science:<br>Materials in Electronics, 2011, 22, 84-90.                                                                  | 2.2 | 23        |
| 35 | Bonding of power device to ceramic substrate using Sn-coated Cu micro paste for high-temperature applications. Applied Surface Science, 2020, 515, 146060.                                                         | 6.1 | 23        |
| 36 | Characterization of Interfacial Reaction Layers Formed Between Sn-3.5Ag Solder and Electroless<br>Ni-Immersion Au-Plated Cu Substrates. Journal of Electronic Materials, 2008, 37, 84-89.                          | 2.2 | 22        |

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Adhesion characteristics of Cu/Ni–Cr/polyimide flexible copper clad laminates according to Ni:Cr<br>ratio and Cu electroplating layer thickness. Journal of Materials Science: Materials in Electronics,<br>2009, 20, 885-890.                   | 2.2 | 22        |
| 38 | High temperature reliability and interfacial reaction of eutectic Sn–0.7Cu/Ni solder joints during isothermal aging. Microelectronics Reliability, 2006, 46, 905-914.                                                                            | 1.7 | 21        |
| 39 | Effect of Ni(P) thickness in Au/Pd/Ni(P) surface finish on the electrical reliability of Sn–3.0Ag–0.5Cu<br>solder joints during current-stressing. Journal of Alloys and Compounds, 2021, 850, 156729.                                           | 5.5 | 21        |
| 40 | Effect of isothermal aging on the interfacial reactions between Sn–0.4Cu solder and Cu substrate with or without ENIG plating layer. Surface and Coatings Technology, 2006, 200, 4440-4447.                                                      | 4.8 | 20        |
| 41 | Mechanical Property Evaluation of Sn-3.0A-0.5Cu BGA Solder Joints Using High-Speed Ball Shear Test.<br>Journal of Electronic Materials, 2009, 38, 2489-2495.                                                                                     | 2.2 | 20        |
| 42 | Effect of surface finish metallization on mechanical strength of Ag sintered joint. Microelectronic<br>Engineering, 2018, 198, 15-21.                                                                                                            | 2.4 | 19        |
| 43 | Electromigration Behavior in Sn-37Pb and Sn-3.0Ag-0.5Cu Flip-Chip Solder Joints under High Current<br>Density. Journal of Electronic Materials, 2009, 38, 70-77.                                                                                 | 2.2 | 18        |
| 44 | Effects of crystalline and amorphous Pd layers on initial interfacial reactions at<br>Sn-3.0Ag-0.5Cu/thin-Au/Pd/Ni(P) solder joints. Applied Surface Science, 2020, 503, 144339.                                                                 | 6.1 | 18        |
| 45 | Comparative study of ENEPIG and thin ENEPIG as surface finishes for SAC305 solder joints. Journal of Materials Science: Materials in Electronics, 2018, 29, 4724-4731.                                                                           | 2.2 | 17        |
| 46 | Microstructural evolution and interfacial reactions of fluxless-bonded Au-20Sn/Cu solder joint during reflow and aging. Journal of Materials Research, 2007, 22, 2817-2824.                                                                      | 2.6 | 16        |
| 47 | Investigation of interfacial reaction and joint reliability between eutectic Sn–3.5Ag solder and<br>ENIC-plated Cu substrate during high temperature storage test. Journal of Materials Science:<br>Materials in Electronics, 2007, 18, 559-567. | 2.2 | 16        |
| 48 | Power Module Packaging Technology with Extended Reliability for Electric Vehicle Applications.<br>Journal of the Microelectronics and Packaging Society, 2014, 21, 1-13.                                                                         | 0.1 | 16        |
| 49 | Effect of Cr Thickness on Adhesion Strength of Cu/Cr/Polyimide Flexible Copper Clad Laminate Fabricated by Roll-to-Roll Process. Materials Transactions, 2010, 51, 85-89.                                                                        | 1.2 | 15        |
| 50 | Optimal Ni(P) thickness and reliability evaluation of thin-Au/Pd(P)/Ni(P) surface-finish with Sn-3.0Ag-0.5Cu solder joints. Journal of Alloys and Compounds, 2019, 805, 1013-1024.                                                               | 5.5 | 15        |
| 51 | Initial interfacial reaction layers formed in Sn–3.5Ag solder/electroless Ni–P plated Cu substrate<br>system. Journal of Materials Research, 2008, 23, 2195-2201.                                                                                | 2.6 | 14        |
| 52 | Effect of Ni-Cr seed layer thickness on the adhesion characteristics of flexible copper clad laminates fabricated using a roll-to-roll process. Metals and Materials International, 2010, 16, 779-784.                                           | 3.4 | 14        |
| 53 | In situ TEM characterization of interfacial reaction in Sn–3.5Ag/electroless Ni(P) solder joint. Scripta<br>Materialia, 2011, 64, 597-600.                                                                                                       | 5.2 | 14        |
| 54 | Effect of adding Ce on interfacial reactions between Sn–Ag solder and Cu. Journal of Materials<br>Science: Materials in Electronics, 2011, 22, 745-750.                                                                                          | 2.2 | 14        |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Electromigration effect on Sn-58Â% Bi solder joints with various substrate metallizations under current stress. Journal of Materials Science: Materials in Electronics, 2016, 27, 1105-1112.                                     | 2.2 | 14        |
| 56 | Interfacial reaction and mechanical properties between low melting temperature Sn–58Bi solder and various surface finishes during reflow reactions. Journal of Materials Science: Materials in Electronics, 2015, 26, 1649-1660. | 2.2 | 13        |
| 57 | Characterization of Failure Behaviors in Anisotropic Conductive Interconnection. Materials<br>Transactions, 2007, 48, 1070-1078.                                                                                                 | 1.2 | 12        |
| 58 | Effects of Different Kinds of Underfills and Temperature–Humidity Treatments on Drop Reliability of<br>Board-Level Packages. Journal of Electronic Materials, 2011, 40, 224-231.                                                 | 2.2 | 12        |
| 59 | Effects of a phosphorous-containing Pd layer in a thin-ENEPIG surface finish on the interfacial<br>reactions and mechanical strength of a Sn–58Bi solder joint. Journal of Alloys and Compounds, 2020,<br>820, 153396.           | 5.5 | 12        |
| 60 | Fast formation of Ni–Sn intermetallic joints using Ni–Sn paste for high-temperature bonding applications. Journal of Materials Science: Materials in Electronics, 2020, 31, 15048-15060.                                         | 2.2 | 12        |
| 61 | Solder joint reliability in flip chip package with surface treatment of ENIG under thermal shock test.<br>Metals and Materials International, 2009, 15, 655-660.                                                                 | 3.4 | 11        |
| 62 | Lead-free Solder for Automotive Electronics and Reliability Evaluation of Solder Joint. Journal of Welding and Joining, 2016, 34, 26-34.                                                                                         | 1.3 | 11        |
| 63 | Phase analysis and kinetics of solid-state ageing of Pb-free Sn3.5Ag solder on electroless NiP<br>substrate. Surface and Interface Analysis, 2004, 36, 963-965.                                                                | 1.8 | 10        |
| 64 | Effects of Underfill Materials and Thermal Cycling on Mechanical Reliability of Chip Scale Package.<br>IEEE Transactions on Components and Packaging Technologies, 2009, 32, 633-638.                                            | 1.3 | 10        |
| 65 | Mechanical Reliability of Sn-Ag BGA Solder Joints With Various Electroless Ni-P and Ni-B Plating<br>Layers. IEEE Transactions on Components and Packaging Technologies, 2010, 33, 222-228.                                       | 1.3 | 10        |
| 66 | Thermal Aging Characteristics of Sn-xSb Solder for Automotive Power Module. Journal of Welding and Joining, 2017, 35, 38-47.                                                                                                     | 1.3 | 10        |
| 67 | Interfacial Reaction and Mechanical Characterization of Eutectic Sn–Zn/ENIG Solder Joints during Reflow and Aging. Materials Transactions, 2005, 46, 2386-2393.                                                                  | 1.2 | 9         |
| 68 | Interfacial reactions between In–48Sn solder and electroless nickel/immersion gold substrate during reflow process. Surface and Interface Analysis, 2006, 38, 426-428.                                                           | 1.8 | 9         |
| 69 | Interfacial reactions and mechanical properties of In–48Sn solder joint with electroplated Au/Ni ball grid array (BGA) substrate after multiple reflows. Journal of Materials Research, 2008, 23, 1631-1641.                     | 2.6 | 9         |
| 70 | Effect of Plasma Surface Finish on Wettability and Mechanical Properties of SAC305 Solder Joints.<br>Journal of Electronic Materials, 2016, 45, 6184-6191.                                                                       | 2.2 | 9         |
| 71 | Effect of Sintering Conditions on Microstructure and Mechanical Strength of Cu Micro-Particle<br>Sintered Joints for High-Power Semiconductor Module Applications. Journal of Welding and Joining,<br>2019, 37, 26-34.           | 1.3 | 9         |
| 72 | Nickel–tin transient liquid phase sintering with high bonding strength for high-temperature power<br>applications. Journal of Materials Science: Materials in Electronics, 2019, 30, 20205-20212.                                | 2.2 | 8         |

| #  | Article                                                                                                                                                                                                       | IF                | CITATIONS           |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|
| 73 | Solderability of thin ENEPIG plating Layer for Fine Pitch Package application. Journal of the<br>Microelectronics and Packaging Society, 2017, 24, 83-90.                                                     | 0.1               | 8                   |
| 74 | Effect of temperature on shear properties of Sn-3.0Ag-0.5Cu and Sn-58Bi solder joints. Journal of Alloys and Compounds, 2022, 903, 163987.                                                                    | 5.5               | 8                   |
| 75 | Fabrication of Ni Metal Mask by Electroforming Process Using Wetting Agents. Journal of Electronic<br>Materials, 2007, 36, 1510-1515.                                                                         | 2.2               | 7                   |
| 76 | Mechanical strength and fracture mode transition of Sn-58Bi epoxy solder joints under high-speed shear test. Journal of Materials Science: Materials in Electronics, 2012, 23, 1515-1520.                     | 2.2               | 7                   |
| 77 | Joint reliability evaluation of thermo-compression bonded FPCB/RPCB joints under high temperature storage test. Microelectronics Reliability, 2013, 53, 2036-2042.                                            | 1.7               | 7                   |
| 78 | Sequential interfacial reactions of <scp>SAC305</scp> solder joints with thin <scp>ENEPIG</scp> surface finishes. Surface and Interface Analysis, 2018, 50, 1046-1050.                                        | 1.8               | 7                   |
| 79 | Fast formation of Cu-Sn intermetallic joints using pre-annealed Sn/Cu/Sn composite preform for high-temperature bonding applications. Thin Solid Films, 2020, 698, 137873.                                    | 1.8               | 7                   |
| 80 | Ultrasonic Bonding Technology for Flip Chip Packaging. Journal of Welding and Joining, 2008, 26, 31-36.                                                                                                       | 0.3               | 7                   |
| 81 | Effects of different kinds of seed layers and heat treatment on adhesion characteristics of Cu/(Cr or) Tj ETQq1                                                                                               | 1 0.784314<br>2.2 | FrgBT /Over or<br>6 |
| 82 | Interfacial reactions and mechanical strength of Sn-3.0Ag-0.5Cu/0.1㎛-Ni thin ENEPIG solder joint.<br>Journal of Welding and Joining, 2017, 35, 51-58.                                                         | 1.3               | 6                   |
| 83 | Flip-chip Bonding Technology and Reliability of Electronic Packaging. Journal of Welding and Joining, 2007, 25, 6-15.                                                                                         | 0.3               | 6                   |
| 84 | Thermo-compression bonding of electrodes between FPCB and RPCB by using Pb-free solders. Journal of Materials Science: Materials in Electronics, 2012, 23, 41-47.                                             | 2.2               | 5                   |
| 85 | Effect of rare earth metal Ce addition to Sn-Ag solder on interfacial reactions with Cu substrate.<br>Metals and Materials International, 2014, 20, 515-519.                                                  | 3.4               | 5                   |
| 86 | Comparative study of normal and thin Au/Pd/Ni(P) surface finishes with Sn–3.0Ag–0.5Cu solder joints<br>under isothermal aging. Journal of Materials Science: Materials in Electronics, 2021, 32, 24790-24800. | 2.2               | 5                   |
| 87 | Comparative study of interfacial reaction and bonding property of laser- and reflow-soldered<br>Sn–Ag–Cu/Cu joints. Journal of Materials Science: Materials in Electronics, 2022, 33, 7983-7994.              | 2.2               | 5                   |
| 88 | Effects of solder volume and size on microstructures and mechanical properties of Sn-3.0Ag-0.5Cu solder joints. Journal of Materials Science: Materials in Electronics, 2022, 33, 16700-16709.                | 2.2               | 5                   |
| 89 | Characteristic analysis of electroless Ni plating layer for electronic packaging. Surface and Interface<br>Analysis, 2006, 38, 440-443.                                                                       | 1.8               | 4                   |
| 90 | A novel and simple fabrication technology for high power module with enhanced thermal                                                                                                                         |                   | 3                   |

performance., 2012,,.

| #   | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Effects of Ni layer thickness of thin-ENEPIG surface finishes on the interfacial reactions and shear<br>strength of Sn-3.0Ag–0.5Cu solder joints during aging. Journal of Materials Science: Materials in<br>Electronics, 2019, 30, 12911-12923.                     | 2.2 | 3         |
| 92  | A Study of Transient Liquid Phase Bonding Using an Ag-Sn3.0Ag0.5Cu Hybrid Solder Paste. Journal of<br>Welding and Joining, 2021, 39, 376-383.                                                                                                                        | 1.3 | 3         |
| 93  | High-temperature stability of Ni-Sn intermetallic joints for power device packaging. Journal of Alloys<br>and Compounds, 2022, 890, 161778.                                                                                                                          | 5.5 | 3         |
| 94  | Effect of Thin ENEPIG Plating Thickness on Interfacial Reaction and Brittle Fracture Rate of Sn-3.0Ag-0.5Cu Solder Joints. Journal of Welding and Joining, 2018, 36, 52-60.                                                                                          | 1.3 | 3         |
| 95  | Metallurgically and mechanically reliable microsilver-sintered joints for automotive power module applications. Journal of Materials Science: Materials in Electronics, 2022, 33, 1724-1737.                                                                         | 2.2 | 2         |
| 96  | A Study of the Growth Rate of Cu-Sn Intermetallic Compounds for Transient Liquid Phase Bonding during Isothermal Aging. , 2018, , .                                                                                                                                  |     | 1         |
| 97  | Interfacial reactions and mechanical properties of Sn–3.0Ag–0.5Cu solder with pure Pd or Pd(P)<br>layers containing thin-Au/Pd/Ni(P) surface-finished PCBs during aging. Journal of Materials Science:<br>Materials in Electronics, 2020, 31, 4027-4039.             | 2.2 | 1         |
| 98  | The Effect of Environmental Test on the Shear Strength of the Ultrasonic bonded Cu Terminal for Power Module. Journal of Welding and Joining, 2019, 37, 1-6.                                                                                                         | 1.3 | 1         |
| 99  | Intermetallic compound transformation and mechanical strength of Ni–Sn transient liquid phase<br>sinter-bonded joints in an extreme high-temperature environment. Journal of Materials Science:<br>Materials in Electronics, 2022, 33, 6616.                         | 2.2 | 1         |
| 100 | Effects of shear test temperatures and conditions on mechanical properties of Sn–Ag flip-chip solder bumps. Journal of Materials Science: Materials in Electronics, 2022, 33, 10002-10012.                                                                           | 2.2 | 1         |
| 101 | Effects of Ni(P) layer thickness and Pd layer type in thin-Au/Pd/Ni(P) surface finishes on interfacial<br>reactions and mechanical strength of Sn–58Bi solder joints during aging. Journal of Materials<br>Science: Materials in Electronics, 2020, 31, 19852-19874. | 2.2 | 0         |
| 102 | Recent Studies of Transient Liquid Phase Bonding Technology for Electric Vehicles. Journal of<br>Welding and Joining, 0, , .                                                                                                                                         | 1.3 | 0         |