
Javier F Medina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1777030/publications.pdf Version: 2024-02-01

INVIED F MEDINA

#	Article	IF	CITATIONS
1	Dendritic Inhibition by Shh Signaling-Dependent Stellate Cell Pool Is Critical for Motor Learning. Journal of Neuroscience, 2022, 42, 5130-5143.	3.6	2
2	Immediate and after effects of transcranial direct-current stimulation in the mouse primary somatosensory cortex. Scientific Reports, 2021, 11, 3123.	3.3	12
3	Action-based organization of a cerebellar module specialized for predictive control of multiple body parts. Neuron, 2021, 109, 2981-2994.e5.	8.1	17
4	P-sort: an open-source software for cerebellar neurophysiology. Journal of Neurophysiology, 2021, 126, 1055-1075.	1.8	19
5	Deleting Mecp2 from the cerebellum rather than its neuronal subtypes causes a delay in motor learning in mice. ELife, 2021, 10, .	6.0	14
6	Bidirectional short-term plasticity during single-trial learning of cerebellar-driven eyelid movements in mice. Neurobiology of Learning and Memory, 2020, 170, 107097.	1.9	6
7	A cerebello-olivary signal for negative prediction error is sufficient to cause extinction of associative motor learning. Nature Neuroscience, 2020, 23, 1550-1554.	14.8	26
8	Teaching the cerebellum about reward. Nature Neuroscience, 2019, 22, 846-848.	14.8	21
9	Single-Unit Extracellular Recording from the Cerebellum During Eyeblink Conditioning in Head-Fixed Mice. Neuromethods, 2018, 134, 39-71.	0.3	12
10	Using Animal Models to Improve the Design and Application of Transcranial Electrical Stimulation in Humans. Current Behavioral Neuroscience Reports, 2018, 5, 125-135.	1.3	9
11	Computational Principles of Supervised Learning in the Cerebellum. Annual Review of Neuroscience, 2018, 41, 233-253.	10.7	174
12	Cerebellar granule cells acquire a widespread predictive feedback signal during motor learning. Nature Neuroscience, 2017, 20, 727-734.	14.8	182
13	Dynamic modulation of activity in cerebellar nuclei neurons during pavlovian eyeblink conditioning in mice. ELife, 2017, 6, .	6.0	90
14	Mechanisms for motor timing in the cerebellar cortex. Current Opinion in Behavioral Sciences, 2016, 8, 53-59.	3.9	38
15	Chromatin remodeling inactivates activity genes and regulates neural coding. Science, 2016, 353, 300-305.	12.6	96
16	Signal, Noise, and Variation in Neural and Sensory-Motor Latency. Neuron, 2016, 90, 165-176.	8.1	43
17	How and why neural and motor variation are related. Current Opinion in Neurobiology, 2015, 33, 110-116.	4.2	31
18	Climbing fibers encode a temporal-difference prediction error during cerebellar learning in mice. Nature Neuroscience, 2015, 18, 1798-1803.	14.8	193

JAVIER F MEDINA

#	Article	IF	CITATIONS
19	Cerebellar-Dependent Expression of Motor Learning during Eyeblink Conditioning in Head-Fixed Mice. Journal of Neuroscience, 2014, 34, 14845-14853.	3.6	155
20	Sensory-Driven Enhancement of Calcium Signals in Individual Purkinje Cell Dendrites of Awake Mice. Cell Reports, 2014, 6, 792-798.	6.4	56
21	Precise Control of Movement Kinematics by Optogenetic Inhibition of Purkinje Cell Activity. Journal of Neuroscience, 2014, 34, 2321-2330.	3.6	214
22	The Neural Code for Motor Control in the Cerebellum and Oculomotor Brainstem. ENeuro, 2014, 1, ENEURO.0004-14.2014.	1.9	17
23	Coding of stimulus strength via analog calcium signals in Purkinje cell dendrites of awake mice. ELife, 2014, 3, e03663.	6.0	67
24	Beyond "all-or-nothing―climbing fibers: graded representation of teaching signals in Purkinje cells. Frontiers in Neural Circuits, 2013, 7, 115.	2.8	68
25	Adaptive Timing of Motor Output in the Mouse: The Role of Movement Oscillations in Eyelid Conditioning. Frontiers in Integrative Neuroscience, 2011, 5, 72.	2.1	51
26	The multiple roles of Purkinje cells in sensori-motor calibration: to predict, teach and command. Current Opinion in Neurobiology, 2011, 21, 616-622.	4.2	80
27	Acquisition of Neural Learning in Cerebellum and Cerebral Cortex for Smooth Pursuit Eye Movements. Journal of Neuroscience, 2011, 31, 12716-12726.	3.6	14
28	A Recipe for Bidirectional Motor Learning: Using Inhibition to Cook Plasticity in the Vestibular Nuclei. Neuron, 2010, 68, 607-609.	8.1	12
29	Encoding and Decoding of Learned Smooth-Pursuit Eye Movements in the Floccular Complex of the Monkey Cerebellum. Journal of Neurophysiology, 2009, 102, 2039-2054.	1.8	62
30	Links from complex spikes to local plasticity and motor learning in the cerebellum of awake-behaving monkeys. Nature Neuroscience, 2008, 11, 1185-1192.	14.8	250
31	Variation, Signal, and Noise in Cerebellar Sensory-Motor Processing for Smooth-Pursuit Eye Movements. Journal of Neuroscience, 2007, 27, 6832-6842.	3.6	106
32	The Representation of Time for Motor Learning. Neuron, 2005, 45, 157-167.	8.1	79
33	Inhibition of climbing fibres is a signal for the extinction of conditioned eyelid responses. Nature, 2002, 416, 330-333.	27.8	227
34	Parallels between cerebellum- and amygdala-dependent conditioning. Nature Reviews Neuroscience, 2002, 3, 122-131.	10.2	229
35	A Mechanism for Savings in the Cerebellum. Journal of Neuroscience, 2001, 21, 4081-4089.	3.6	204
36	Computer simulation of cerebellar information processing. Nature Neuroscience, 2000, 3, 1205-1211.	14.8	316

JAVIER F MEDINA

#	Article	IF	CITATIONS
37	Mechanisms of cerebellar learning suggested by eyelid conditioning. Current Opinion in Neurobiology, 2000, 10, 717-724.	4.2	178
38	Timing Mechanisms in the Cerebellum: Testing Predictions of a Large-Scale Computer Simulation. Journal of Neuroscience, 2000, 20, 5516-5525.	3.6	327
39	Simulations of Cerebellar Motor Learning: Computational Analysis of Plasticity at the Mossy Fiber to Deep Nucleus Synapse. Journal of Neuroscience, 1999, 19, 7140-7151.	3.6	152
40	Does Cerebellar LTD Mediate Motor Learning? Toward a Resolution without a Smoking Gun. Neuron, 1998, 20, 359-362.	8.1	76